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The ARCH fi-amework has been found to be very successful in capturing many of the 
empirical characteristics of exchange rates and other financial variables. However, there are 
situations when the approach has not been able to explain all of the empirical characteristics of 
the data. These include when data are highly skewed and leptokurtic, such as intraday 
financial data or when large movements in asset prices occur 

The paper builds on the ARCH framework for modeling distributions with time- 
varying conditional variances by using a subordinate class of distributions from the generahzed 
exponential family known as the generalized Student f distribution. The distribution offers 
flexibility in modeling both leptokurtosis and asymmetry, nests the standard normal and 
Student t distributions, and is related to the Gram Charlier and mixture distributions. An 
empirical model is formulated and estimated using hourly exchange rate returns for four 
currencies that combine ARCH-type conditional variances and nonnormal conditional 
distributions. Overall, the generalized Student t distribution is found to perform better overall 
in terms of modeling both the empirical conditional and unconditional distributions than other 
conditional variance models based on alternative distributional specifications. 
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I. INTRODUCTION 

It is now common practice in the modelling of foreign exchange rates to use models that allow 
for time variation in the second moment based on the ARCH framework introduced by Engle 
(1982) and extended by Bollerslev (1986) and Nelson (1991).r Key features of the earliest versions 
of the ARCH class of models are that the conditional distribution is assumed to be normal, the 
unconditional distribution is leptokurtic as it exhibits fatter tails and a sharper peak than the 
normal distribution, and because of the normality assumption the conditional distribution is not 
skewed. 

For a range of data sets on exchange rates, the ARCH framework has been found to be very 
successful in capturing many of the empirical characteristics in the data. However there are situa- 
tions when some empirical characteristics are left unexplained. For example, Baillie and Bollerslev 
(1989) replaced the conditional normality assumption by a Student t distribution and a power ex- 
ponential distribution to model the excess kurtosis in the conditional distribution of exchange rate 
returns, whereas Hsieh (1989) experimented with a range of conditional nonnormal distributions. 
In studying the British Pound/U!% exchange rate, Gallant, Hsieh and Tauchen (1991) and Engle 
and Gonzalez-Rivera (1991), found evidence of skewness in the conditional distribution.2 These au- 
thors also found evidence of multimodality in the conditional distribution with side lobes occurring 
in the tails of the distribution. Gallant, Hsieh and Tauchen used a seminonparametric approach 
by defining the conditional distribution as the product of a normal distribution and a polynomial 
based on a truncated Hermite expansion. A similar approach was adopted by Lee and Tse (1991) 
in which they referred to the distribution as a Gram Charlier distribution. In contrast, Engle and 
Gonzalez-Rivera used a semiparametric approach with the conditional distribution approximated 
by a kernel density.3 

This paper introduces a class of parametric ARCH models that is based on a density that 
provides flexibility in modelling not only symmetric fat-tailed distributions, but also distributions 
that are skewed. Such characteritics are seen in high frequency data and when there are large 
movements in the data (for example, during a asset market crash). This distribution is called 
the generalized Student t, which is a subordinate of the generalized exponential distribution (Lye 
and Martin (1993)). This distribution is shown to contain the standard Student t and normal 
distributions as special cases. It is also shown to be related to the seminonparametric class of 
Gallant, Hsieh and Tauchen (1991) and Lee and Tse (1991), as well as to mixture distributions 
which have been investigated by Friedman and Vandersteel (1982) and studied recently by Phillips 
(1994) in the robust estimation literature. 

‘For a review of this literature and a discussion of further generalizations, see Bollerslev, Engle and Nelson (1994). 
For a review of much of the applied work see Bollerslev, Chou and Kroner (1992). 

21t has been argued by de Vries (1994) that the distribution of exchange rate returns can exhibit skewness when 
countries operate different monetary policies. 

3An alternative approach to specifying a parameteric density, which is related to the semiparametric approach of 
Engle and Gonzalez-Bivera (1991), is the adaptive estimator suggested by Linton (1993). 
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The use of the generalized Student t in modelling the distribution of financial asset prices is 
shown to offer many advantages. First, this distribution can display a range of distributional 
properties such as skewness and kurtosis, with a parsimonious set of parameters. Second, as the 
generalized Student t includes the normal and Student t distributions, this facilitates the use of 
standard testing procedures based on Lagrange multiplier tests to discriminate between alternative 
models. Third, as the parameters of the model can be estimated easily by conventional maximum 
likelihood algorithms, the use of the generalized Student t distribution is potentially more simple, 
and possibly more convenient, than other distributions based on either mixture distributions or 
kernel densities. Fourth, the parameter estimates may, in general, be more efficient than those 
based on quasi-maximum likelihood methods where the conditional distribution is assumed to be 
normal. Even though Weiss (1986) and Bollerslev and Wooldridge (1992) have shown that the quasi- 
maximum likelihood estimator is consistent assuming the mean and the variance of the process are 
specified correctly, in general the estimates are inefficient with the degree of inefficiency increasing 
the more that the true conditional distribution departs from normality.* Finally, the density is 
always well defined which contrasts with the Gram Charlier distribution of Lee and Tse (1991) 
where it is possible for the density to be negative over certain regions.5 

The paper proceeds as follows. The generalized Student t distribution is discussed in Section II. 
Special attention is given to discussing the relationships between this distribution and distributions 
of the standard Pearson family, and both the Gram Charlier and mixture distributions. A class 
of parametric ARCH models is motivated in Section III by showing that the generalized Student t 
distribution arises as the solution of a continuous time approximation to a discrete ARCH model. 
Also discussed in this section are estimation and computational issues. In Section IV, the model is 
used to characterize the distribution of hourly returns of four exchange rates. The results obtained 
are also contrasted for a number of alternative distributional models, including the normal, Student 
t, Gram Charlier, mixture and a skewed Student t density which is also known as Pearson’s Type 
IV density. Concluding comments are given in Section V. 

II. DISTRIBUTIONAL FLEXIBILITY AND GENERALIZED 
Student t DISTRIBUTIONS 

The generalized Student t distribution represents an extension of the Pearson exponential fam- 
ily. The properties of this family of distributions have previously been studied by O’Toole (1933a, 
1933b), Cobb (1978), Cobb, Koppstein and Chen (1983), Cobb and Zacks (1985), Martin (1990), 
and Lye and Martin (1993). The generalized Student t distribution can be derived from a general- 
ization of the Pearson differential equation as follows 

df -9W(4 
dz= h(4 ’ 

(1) 

4See Engle and GonzQez-Rivera (1991). 
‘See, for example, Kendall and Stuart (1963). 
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where g(z) and h( z are polynomials in the random variable Z, and f(z) is the density function of ) 
Z. In the standard Pearson system, g(z) is a polynomial in z of degree less than or equal to one, 
whereas h(z) is a polynomial in z of degree less than or equal to two. The general solution of (1) is 

f(z)=exp[-1 (f$)ds--q], ZED, 

where the normalizing constant is given by 

7j=ln/exp [-I ($$)ds] dz. 

The domain D, of f(z) in (2) is the open interval where h(z) is positive. 

The choice of g(.) and h( .) for the generalized Student t distribution are” 

M-l 

g(z) = c a!& 
i=o 

h(z) = y2 + x2. 

By substituting (4) and (5) in (2), the generalized Student t distribution is given by 

(2) 

(3) 

(4) 

(5) 

f(z) = exp 
i 
191 tan -‘(z/y) + 02 ln(y2 + z2) + 5 &z-~ - 17 

i=3 I 
, --co<<<<, (6) 

where 

r) = log 
1 [ 

exp 81 tan-r (z/r) + 192 ln(y2 + z2) + 5 &Z+~ 
i=3 1 dz, (7) 

and the distribution parameters Sj, are functions of the parameters {c~j,j = 0, 1, . . . . M - 1; y} given 
in (4) and (5). P rovided that in (6) 8~ < 0, all moments of the distribution exist. This distribution 
can exhibit a range of shapes, including fat tails, sharp peaks, and even multimodality. 

A. Relationship With Pearson Distributions 

As the generalized Student t distribution given by (6) is derived from an extension of the 
Pearson family, it directly contains many of the Pearson subordinate distributions as special cases. 
In particular, from the point of view of existing ARCH models, these special cases include the 
normal and Student t distributions. The standard normal distribution occurs when 03 = -0.5, and 
all remaining parameters are zero. The Student t distribution occurs when 02 = -0.5(1+ r2), and 
all remaining parameters are zero. 

‘See Lye and Martin (1993). 
7Lye and Martin (1993) provide a discussion of the properties of the generalized Student t distribution. 
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A special case which terms out to be important in the empirical application is given by (6), 
with I$ = 0, i > 2, and 82 = -0.5(1 + r2) 

f(z) = exp [or tan-r (z/y) - 0.5(1+ r2) ln(y2 + .z~) - q] , - 00 < z < 00, (8) 

where ?j, is the normalizing constant. This distribution is referred to as the skewed Student t 
distribution where skewness is controlled by the parameter 191. 8 When 191 = 0, there is no skewness 
and the distribution becomes the Student t distribution. 

B. Relationship With Gram Charlier Distributions 

In formulating an ARCH model of the term structure, Lee and Tse (1991) used a conditional 
nonnormal distribution based on a Gram Charlier distribution. One form of this distribution is 

fGC(4 = w [ (9) 
where 4(z) is the standard normal density function, and I&(Z) and Ha(z) are the Hermite polyno- 
mials defined by 

H3(z) = z3 - 32; H*(x) = z* - 6~~ + 3. (10) 
The parameters X3 and X4, represent the standardized measures of skewness and kurtosis respec- 
tively. The function fGC( ) p z re resents the first three terms of the Gram Charlier series (Kendall 
and Stuart (1963, Vol.1, pp.156-157)). 

A simple relationship between the Gram Charlier and generalized Student t distributions can be 
identified as follows. Consider the generalized Student t distribution with M = 4 and 81 = 02 = 0, 
which is also known as the generalized normal distribution 

fGN(2+ = exp [ore + e2z2 + e3z3 + e424 - q] , 

where ?J is the normalizing constant. This distribution can be decomposed as: 

(11) 

fGN(z) = exp [-+I exp [ -0.5~~ - 0.51n(2*)] exp [elz + (e2 + 0.5)~~ + 03.~~ + @4z*] , 

where exp [-71 = exp [-7’1 exp [-0.51n(2?r)]. Notice that the second term is just 4(z), the standard 
normal distribution given in (9). Now using the properties of a Taylor series expansion of order 
one for the exponential function eq[ur], around zu = 0, then 

exp [ 8rZ + (0, + 0.5)~~ + e3z3 + e4z4 1 = 1 + els + (e2 + 0.5)~~ + e323 + e42*, 

‘The skewed Student t distribution is also known as Pearson’s Type IV distribution; see Kendall and Stuart (1963, 
pp.151-152). The former name has been adopted here to emphasize its relationship with the Student t distribution 
as well as to highlight its ability to generate Student t densities which are skewed. 
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so that fGN(~) is approximately equal to 

fGN(z) 21 exp [--{I exp [0;z2 - 0.5 ln(27r)] [I+ elz + (e2 + 0.5)~~ + e3z3 + 84z4] . 

If the parameters in (12) are constrained as 

(12) 

el=-$!; e2=- (2 + X4) i +2e2 
4 

; e3=-+; e4z-12, 

then (12) corresponds to the Gram Charlier distribution given by (9) and (10). Hence the Gram 
Charlier type distribution and the generalized Student t distribution model the higher order skew- 
ness and kurtosis moments in a similar way. 

A potential problem with the Gram Charlier formulation adopted by Lee and Tse (1991) is 
that V(Z) may take negative values, and consequently the density may not always be well defined 
(Kendall and Stuart (1963, Vol.l., p.160)). I n contrast, this is not a problem with the generalized 
Student t distribution as it is constrained to be positive and hence it is always well defined. An 
alternative approach that overcomes the negativity problem, but still is in the spirit of the Gram 
Charlier distribution is to follow Gallant, Hsieh and Tauchen (1991) by writing the distribution as 

fGHT(4 = rd44+>2, (13) 

where 4(z) is as before, the standard normal distribution, s(z) is a polynomial in Z, and the 
normalizing constant is 5-l = J 4(z)c(z)2dz. If C(Z) is chosen as a quadratic, then 

c(z>2 = ( 1+ <lZ + c2z2 > 
2 

= 1 + 2512 + (<f + 2c2) z2 + 2W2Z3 + &z*, (14) 

and the relationship with the parameters of the generalized Student t distribution, as approximated 
by (12), is 

e1 = 2cl; ei = <f + 2~~ - 0.5; 83 = 2c1c2; e4 = & (15) 

The relationship between (13) and a Gram Charlier distribution is preserved by recognizing that 
the polynomial in (14) can be re-expressed in terms of Hermite polynomials. 

C. Relationship With Mixture Distributions 

The use of a variance mixture of normal distributions has been a popular method for modelling 
nonnormalities given the wide range of shapes that can be obtained by varying the parameters of 
this class of distributions; for a discussion of the properties of this class of distributions.g 

‘See for example, Eisenberger (1964); Robertson and Fryer (1969); and Behboodian (1970); while for an application 
to financial markets, see Jorion (1988). 
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A mixture of normal distributions is defined as 

where f(~&,, ai) = (2~0i)-l’~ exp [- (w - P.,)~ /2~7:] , and K is a weighting parameter with the 
property 0 < K < 1. It is apparent that the likelihood function becomes unbounded when one of 
the variances in (16) approaches zero. A natural way to impose this constraint in the context of 
ARCH models, which allows for further simplification in estimation, is to let ~22 = 1, represent the 
benchmark for the standard normal case, and constrain a: = g > 1, to be the high variance case.lO 
Equation (16) is now rewritten as 

fMN(4 = (1 - df(40,d + Ff(40, l), PO> 
where g > 1 and 0 < K < 1, are parameters to be estimated. This reparameterization has the 
added benefit that the standard normal distribution is directly given as a special case when K. = 1, 
and that values of K < 1, provides evidence of nonnormalities. 

To highlight the relationship between the generalized normal and mixture distributions, define 
the exponential terms in (20) as exp[w] and expand around w = 0 in a Taylor series expansion of 
order two. This approximation implies that the mixture of normal distributions can be written as 

Equation (21) shows that the mixture distribution in (20) can be approximated by a distribution 
containing a constant and the terms z2 and z 4. To show the relationship between the mixture and 
generalized Student t distribution, consider the following special case of the generalized Student t 
distribution, known as the symmetric generalized normal distribution, which is obtained by setting 
194,& # 0, while all remaining parameters in (6) are set to zero 

fSGN(z) = eXp [6&z’ -k t&Z4 - ?j] , (22) 
“Following Phillips (1991, 1994), one way to bound the likelihood function associated with this density is to impose 

the constraints 
C&+1, 

Cl 
(17) 

where c E (0,l) , is known. Equation (17) forces a& to be the low variance and ~7: to be the high variance, with the 
added condition that the two variances cannot deviate from each other too much. These constraints can be imposed 
conveniently by re-expressing (17) as 

Ul = Saz; 

where 6 > 1, y 2 0. By solving for 01 and 02 

02 = co1 + y. (18) 

the standard deviations are now expressed in terms of the parameters (6, y, c}, which can be estimated conveniently 
in a standard maximum likelihood algorithm. 
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where ?j is the normalizing constant. This distribution can be written to have the same form as 
(21) by expanding eq[ w m a Taylor series expansion of order one around w = 0 ] . 

fSGN(Z) ?s (1 -k e&Z2 -k &Z4) exp(+). (23) 

Matching terms with (21) shows a relationship between the generalized Student t parameters 
{e4, 86}, and the mixture parameters {~,g}. 

III. GENERALIZED PARAMETRIC 
ARCH MODELS 

In this section, a class of ARCH models based on the generalized Student t distribution is 
presented. A maximum likelihood algorithm is also given for estimating the parameters of the 
model. To help motivate the use of the generalized Student t distribution in formulating ARCH 
models, it is shown that this distribution represents the solution of a continuous time model which 
is used to approximate a discrete time ARCH(l) model. An important outcome of this result 
is that as it is possible to derive explicit relationships between the parameters of the model and 
the parameters governing the distribution, it is possible to give the shape of the distribution an 
economic interpretation. 

A. A Continuous Time Approximation 

Consider the following simple integrated ARCH(l) model for yt 

Yt = a0 + w!/t-1 + d&t, 

where the conditional variance is specified as1l 

ht = y2 + y;-1, (25) 
and the error term is assumed to be distributed as zt N N(O, I). Combining (24) and (25), and 
rearranging gives 

Yt - XI-1 = Qo + (Ql - q yt-1 + @-T&t. (26) 

The discrete time ARCH model in (26) does not admit an analytical expression for the uncondi- 
tional distribution of y. Adopting the lead of Nelson (1990), there is however, much to be obtained 

“For the typical nonintegated ARCH specification where the conditional mean is QO + LY~Y~-~, the conditional 
variance would usually be specified as 

ht = y2 +Pl(yt-1 --a0 --lyt-2)2. 

This only serves to complicate slightly the derivation of the model set out below without significantly changing the 
thrust of the argument. 
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from investigating the properties of the continuous time analogue of (26). In particular,equation 
(26) can be thought of as a disretization based on an Euler scheme of the following continuous time 
process 

dY = Pu(YM + 4YPW (27) 
where the instantaneous mean and variance are respectively p(y) = a~+ (al - 1) y, a2(y) = y2 +y2, 
and dW - N(0, dt) is a Wiener process. l2 The unconditional distribution f(y), is derived from the 
Kolmogorov forward equation 

af WY) + 1 d2a2(y) 
SF=-dy 2 ay2 ’ (2% 

and setting af /at = 0 (Creedy and Martin (1994)). The solution is 

f(Y) = exp [h tan-l (Y/4 + 42 ln (y2 + y2) - 0’1 , (29) 

where the parameters governing the distribution are 

42 = 2(a1 - 2), 

and the normalizing constant is 

(31) 

which is determined from the boundary conditions of (28) which ensure that the density is proper; 
namely J-w f(y)dy = 1. 

The unconditional density in (29) highlights in an explicit way, the relationship between the 
structural parameters (~0, CX~, r2} and the distributional parameters (41, 42, r2}. More importantly, 
it shows how the choice of the economic model can be used to identify the form of the probability 
distribution. To highlight this point, inspection of (29) shows that the standard Student t distrib- 
ution is a special case, occurring when 41 = 0 and 42 = -(l + r2)/2. From the definition of 42 in 
(30), this implies that 

As all of the parameters of (31) are not identified, (32) serves as a natural identifying restriction. 
Further, the parameter y2, which is obtained from the conditional variance specification of an 
ARCH(l) model, corresponds to the “degrees of freedom” parameter of the distribution. 

The distribution given by (29) is skewed when 41 # 0. For this reason (29) is referred to as 
the skewed Student t distribution. From the definition of 41 in (30), this implies that QO # 0. 

“To reduce the amount of notation, the parameters of the continuous time model are not distinguished from the 
parameters of the discrete model. 
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Inspection of (24) h s ows that this result makes sense as the occurrence of drift causes the process 
yt to drift continually in one direction resulting in the distribution being skewed. When a0 = 0, 
there is no tendency for yt to drift in either direction thereby resulting in the distribution being 
symmetrical. 

An important feature of the stochastic differential equation in (27) is that the instantaneous 
mean p(y) = as + (ai - 1) y, is linear in the random variable y. Following recent work by Conley, 
Hansen, Luttmer and Scheinkman (1995), Ait-Sahalia (1995), and Creedy, Lye and Martin (1996), 
on nonlinear stochastic differential equations, the mean is now generalized to a polynomial of order 
greater than unity 

dYt = (a0 + t w - 1) Yt + Q2Yt2 + cr3Yt3 + (r4Y,4 + a5Yt5 ) dt + Jmdwi,. (33) 

The Kolmogorov forward equation is now 

8.f 8 -- 
at= dy ( Lug + (Ql - 1) y + Q2Y2 + a3y3 + Q4Y,4 + a5y: )+$$(Y2+Y2)> (34 

and the unconditional distribution, which is found by setting aflat = 0, is 

f(y) = exp [or tan-i (Y/Y)+ 02ln(~~ +y2) +Q~Y + Q4y2 + 05~~ +QsY* -q] , (35) 

where 77 is the normalizing constant which is determined from the boundary conditions of (34) which 
ensure that JyW f(y)dy = 1. The distribution parameters are related to the structural parameters 
in (33) as follows 

81 = 2 ( a0 - ya2 + y2a4 ) > 
$2 = a1 -y2a3 +y4a5 - 3, 

03 = 2(cy2-~24, 

04 = a3 -y2a5, 
85 = k4/3, 

‘96 = 42. 

(36) 

Note that it is the ARCH specification in (25), and hence the variance specification, which is 
governing the form of the unconditional distribution. This is most readily seen by replacing (25) 
by the unconditional variance ht = y 2. Solving for the unconditional distribution of yt, results in 
a normal distribution. Further, the results derived in this section emphasizes the earlier result of 
Engle (1982) that the combination of conditional normality with an ARCH conditional variance 
model yields a nonnormal unconditional distribution with fatter tails than the normal distribution, 
and also reinforces Nelson’s (1990) earlier result that an explicit expression for the unconditional 
distribution can be obtained by using the continuous time framework to approximate the discrete 
time ARCH model. 
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B. Basic Framework 

Given the result that the unconditional distribution of exchange rate returns is generalized 
Student t when the underlying continuous time process given by (33) is assumed to approximate 
the discrete time process, this suggests that a natural starting model is given by (24), except that 
zt is no longer assumed to be normal, but generalized Student t (Lim, Lye, Martin and Martin 
(1996)). A p t ar icular form of this model which is used in the empirical investigation is 

Yt = d&t, (37) 

where the conditional variance is given by either a GARCH or EGARCH specification 

GARCH: ht = crf + &y;wl + c&t-l, 
EGARCH ln(ht) = c$ + a? ln(ht-1) + ffF IYt-l/&1 + @ (Yt-I/&) , 

(38) 

and the distribution of zt is iid with zero mean, unit variance and is distributed as generalized 
Student t. 

The standardized generalized Student t distribution is derived as follows. Define the standard- 
ized random variable as 

where w has the following generalized Student t distribution 

f(w) = exp [Or tan-r (w/y) - 0.5 (1 + y2) In (y2 + w2) + 04w2 - vw] , 
with respective mean and variance 

p-w = s wf(wW, 

0; = 
s (w - pwj2 f(w)dw. 

Using the change of variable technique, the distribution of z is 

f(z) = 0, exp L f?r tan-r tth + 6s) /y) - 0.5 (I+ r2) In (y2 + (pw + n,~)~) 

+04 (l-&J + aw42 - 71 , 
and where the normalizing constant is given by 

q = ln/o,exp [&tan-’ ((p, + u,z) /y) - 0.5 (1 + r2) In (y2 + (& + a,,~)‘) 

+Q4 (pw + GJ,~] dz, 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 
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C. Estimation Issues 

The parametric ARCH class of models can be estimated conveniently using maximum likelihood 
methods. The logarithm of the likelihood at the tth observation is 

In Lt = -0.5 In ht + 0.5 In gi + 01 tan-’ ((h + a,Ytldq ly> 

-0.5(l+yZ)ln(y2+ (h+~w~t/dG)2) 

+Q4 (h + GYtldq2 -‘I. 

For a sample of t = 1,2, . . . . T, observations, the log of the likelihood function is 

1nL = 5lnLt. (46) 
t=1 

This expression can be maximized with respect to the conditional variance parameters in (38) and 
the distribution parameters {y, &,0*), using standard gradient optimization algorithms. As a re- 
sult of the nonlinearities in the model, it is convenient to use numerical derivatives. The integrals 
involved in computing pW, gW, 7, in (41), (42) and (44) respectively, can be computed numerically 
using standard quadrature methods. All programs are written using the GAUSS computer lan- 
guage. The optimization algorithm chosen is MAXLIK, while the integrations are calculated using 
the procedure INTQUADl. 

In practice it was found that it was best to split the optimizations in terms of the conditional 
variance and distribution parameters before maximizing (46) with respect to all parameters jointly. 
Hence the following algorithm is proposed: 

1. Choose some initial values for the conditional variance parameters oi. One possibility is to 
estimate these parameters assuming conditional normality. 

2. Form the standardized residuals zt = yt/&, and estimate the distribution parameters 
{y, &,04}, by maximizing the likelihood function in terms of zt 

lnLt(zt) = 0.5Inai + 81 tan-l ((pW + a,zt) /y) 
0.5 (1 + r2) In (y2 + (pL,, + a,~)“) + 04 (pw + awzt)2 - q. 

(47) - 

3. Estimate the conditional variance parameters by maximizing the log likelihood function in 
(46), with the distribution parameters fixed at the estimated values obtained from the previous 
step. 

4. Repeat steps 2 and 3 until convergence of all the parameters is obtained. 

5. Finally, maximize (46) with respect to all parameters and compute standard errors. 
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The properties of the maximum likelihood estimator when the conditional variance follows an 
ARCH structure were first studied by Weiss (1986). Bollerslev and Wooldridge (1992) showed that 
when the conditional distribution is assumed to be normal, but the true distribution is nonnormal, 
the (quasi) maximum likelihood parameter estimates of the model are still consistent provided 
that both the mean and the variance are specified correctly. There is generally however, a loss of 
efficiency with the quasi maximum likelihood estimator. This property was noted by Engle and 
Gonzalez-Rivera (1991)) who showed that the loss of efficiency of the quasi maximum likelihood 
estimator could be substantial, especially when the underlying distribution is asymmetric. To help 
overcome this loss of efficiency, the ARCH model described above where the pertinent conditional 
distribution is specified as generalized Student t, provides a parametric approach for modelling 
skewness and achieving improvements in efficiency over the quasi maximum likelihood estimator. 

IV. APPLICATION TO HOURLY EXCHANGE RATES 

There is widespread agreement that the distribution of exchange rate returns is nonnormal; 
see, for example, de Vries (1994). There is also general agreement that models that combine the 
assumption of conditional normality with ARCH conditional variance specifications, explain only 
part of this nonnormality, albeit a significant part. This has led to the development of more general 
classes of models which replace the assumption of conditional normality by a particular nonnormal 
distribution. Hsieh (1989) investigated a broad range of parametric nonnormal distributions for 
a range of exchange rates; Engle and Gonzalez-Rivera (1991) used a semiparametric approach to 
model the distribution of the returns on the British pound/US exchange rate; while Gallant, Hsieh 
and Tauchen (1991) used a seminonparametric approach. Baillie and Bollerslev (1989) used a quasi 
maximum likelihood estimator to estimate ARCH models of intra-day exchange rate returns, while 
for the same data set Harvey, Ruiz and Sentana (1992) used the STAR model. 

The data set chosen here consists of hourly exchange rates recorded in 1987 from 0.00 a.m., 
January 2, to 11.00 a.m., July 15th. The currencies are the British pound (BP), Deutschmark 
(DM), Japanese Yen (JY) and the Swiss frank (SF), all relative to the US dollar.r3 

A. Parameter Estimates 

Tables 1 to 8 contain the parameter estimates of the model given by (37) with conditional 
variance specification given by (38), for the returns on the four bilateral exchange rates. Returns 
are computed as 

yt = ln(et/et-l), (48) 

where et is the bilateral exchange rate, which are then standardized to have zero mean and unit 
variance. Following Harvey, Ruiz and Sentana (1992), hourly dummy variables have not been 
included in the model. For each exchange rate six conditional distributions are specified: normal, 
Student t, Gram Charlier, Mixture, Skewed Student t, generalized Student t. The generalized 

13For further discussion of the data, see Baillie and Bollerslev (1989). 
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Table 1 

GARCH model estimates for alternative conditional distributions: BP 
(Asymptotic robust standard errors in brackets) 

Parameter Normal Stud. t G. Charlier Mixture Skew. Stud. t Gen. Stud. t 

Y2 

x3 

x4 

K 

0.336 0.484 
(0.040) (0.096) 
0.212 0.559 

(0.026) (0.117) 
0.471 0.411 

(0.048) (0.053) 

2.554 
(0.128) 

Mean In Lt -1.381 -1.255 

0.349 
(0.074) 
0.298 

(0.103) 
0.429 

(0.099) 

0.005 
(0.005) 
2.389 

(0.137) 

-1.291 

0.321 
(0.051) 
0.326 

(0.062) 
0.423 

(0.063) 

0.723 
(0.041) 
9.851 

(0.789) 

-1.260 

0.345 
(0.050) 
0.403 

(0.058) 
0.414 

(0.053) 

2.524 
(0.134) 

-0.039 
(0.129) 

-1.254 

0.314 
(0.046) 
0.349 

(0.054) 
0.419 

(0.056) 

1.342 
(0.236) 

-0.048 
(0.054) 
-0.018 
(0.005) 

-1.250 
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Table 2: 

GARCH model estimates for alternative conditional distributions: DM 
(Asymptotic robust standard errors in brackets) 

Parameter Normal Stud. t G.Charlier Mixture Skew. Stud. t Gen. Stud. t 

4 0.293 0.384 
(0.033) (0.103) 

a:: 0.176 0.521 
(0.025) (0.136) 

CG 0.550 0.475 
(0.042) (0.078) 

Y2 2.591 
(0.046) 

x3 

x4 

K 

9 

Mean In Lt -1.391 -1.252 

0.319 
(0.081) 
0.230 

(0.048) 
0.528 

(0.089) 

0.287 
(0.061) 
0.317 

(0.055) 
0.476 

(0.079) 

-0.090 
(0.058) 
2.417 

(0.165) 
0.786 

(0.046) 
9.915 

(1.039) 

-1.303 -1.265 

0.299 
(0.061) 
0.403 

(0.071) 
0.454 

(0.076) 

2.558 
(0.148) 

0.144 
(0.045) 

-1.251 

0.277 
(0.055) 
0.365 

(0.064) 
0.463 

(0.072) 

1.620 
(0.309) 

0.128 
(0.045) 
-0.012 
(0.005) 

-1.248 
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Table 3: 

GARCH model estimates for alternative conditional distributions: JY 
(Asymptotic robust standard errors in brackets) 

Parameter Normal Stud. t G. Charlier Mixture Skew. Stud. t Gen. Stud. t 

4 0.278 0.011 
(0.041) (0.008) 

a:: 0.279 0.190 
(0.036) (0.071) 

4 0.494 0.924 
(0.057) (0.017) 

Y2 2.281 
(0.110) 

x3 

x4 

IG 

9 

Mean In Lt -1.368 -1.168 

0.030 
(0.018) 
0.069 

(0.018) 
0.916 

(0.025) 

-0.103 
(0.067) 
2.854 

(0.145) 

-1.250 

0.011 
(0.006) 
0.085 

(0.021) 
0.921 

(0.018) 

0.831 
(0.031) 
14.556 
(1.991) 

-1.187 

0.003 
(0.002) 
0.074 

(0.019) 
0.938 

(0.015) 

2.243 
(0.113) 

0.133 
(0.041) 

-1.165 

0.003 
(0.002) 
0.071 

(0.019) 
0.939 

(0.015) 

1.891 
(0.220) 

0.131 
(0.039) 
-0.003 
(0.002) 

-1.164 
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Table 4: 

GARCH model estimates for alternative conditional distributions: SF 
(Asymptotic robust standard errors in brackets) 

Parameter Normal Stud. t G. Charlier Mixture Skew. Stud. t Gen. Stud. t 

Y2 

x3 

x4 

K 

9 

01 

04 

0.441 0.718 
(0.079) (0.200) 
0.173 0.642 

(0.028) (0.200) 
0.397 0.366 

(0.092) (0.096) 

2.403 
(0.131) 

Mean In Lt -1.394 -1.270 

0.466 
(0.139) 
0.214 

(0.066) 
0.352 

(0.160) 

0.368 
(0.115) 
0.274 

(0.083) 
0.413 

(0.149) 

-0.043 
(0.030) 
2.298 

(0.124) 
0.655 

(0.062) 
10.262 
(0.975) 

-1.309 -1.277 

0.444 
(0.085) 
0.410 

(0.081) 
0.354 

(0.092) 

2.335 
(0.137) 

0.116 
(0.039) 

-1.269 

0.376 
(0.102) 
0.291 

(0.073) 
0.395 

(0.129) 

0.334 
(0.250) 

0.098 
(0.025) 
-0.036 
(0.018) 

-1.258 
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Table 5: 

EGARCH model estimates for alternative conditional distributions: BP 
(Asymptotic robust standard errors in brackets) 

Parameter Normal Stud. t G. Charlier Mixture Skew. Stud. t Gen. Stud. t 

-0.299 
(0.037) 
0.678 

(0.050) 
0.404 

(0.046) 
0.051 

(0.035) 

-0.260 
(0.054) 
0.668 

(0.039) 
0.666 

(0.071) 
0.011 

(0.012) 

2.594 
(0.134) 

-0.310 
(0.039) 
0.684 

(0.055) 
0.442 

(0.059) 
0.041 

(0.056) 

-0.360 
(0.036) 
0.671 

(0.051) 
0.496 

(0.048) 
0.022 

(0.073) 

0.007 
(0.017) 
2.330 

(0.127) 
0.706 

(0.044) 
9.646 

(0.781) 

Mean In Lt -1.374 -1.252 -1.287 -1.257 

-0.358 
(0.033) 
0.669 

(0.039) 
0.576 

(0.046) 
0.010 

(0.013) 

2.559 
(0.138) 

-0.040 
(0.083) 

-1.252 

-0.380 
(0.034) 
0.673 

(0.040) 
0.528 

(0.045) 
0.020 

(0.027) 

1.286 
(0.238) 

-0.049 
(0.029) 
-0.020 
(0.005) 

-1.247 
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Table 6: 

EGARCH model estimates for alternative conditional distributions: DM 
(Asymptotic robust standard errors in brackets) 

Parameter Normal Stud. t G. Charlier Mixture Skew. Stud. t Gen. Stud. t 

-0.227 -0.248 
(01040) (0.044) 
0.730 0.749 

(0.051) (0.047) 
0.313 0.564 

(0.045) (0.069) 
-0.058 -0.035 
(0.037) (0.023) 

2.637 
(0.150) 

Mean In Lt -1.384 -1.249 

-0.222 
(0.046) 
0.734 

(0.059) 
0.361 

(0.051) 
-0.081 
(0.037) 

-0.087 
(0.131) 
2.438 

(0.176) 

-1.297 

-0.310 
(0.037) 
0.736 

(0.050) 
0.445 

(0.047) 
-0.046 
(0.029) 

0.799 
(0.043) 
9.733 

(1.076) 

-1.261 

-0.319 
(0.033) 
0.743 

(0.047) 
0.501 

(0.049) 
-0.028 
(0.028) 

2.613 
(0.154) 

0.147 
(0.052) 

-1.247 

-0.331 
(0.035) 
0.742 

(0.046) 
0.478 

(0.048) 
-0.030 
(0.023) 

1.657 
(0.319) 

0.131 
(0.049) 
-0.012 
(0.005) 

-1.245 
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Table 7: 

EGARCH model estimates for alternative conditional distributions: JY 
(Asymptotic robust standard errors in brackets) 

Parameter Normal Stud. t G. Charlier Mixture Skew. Stud. t Gen. Stud. t 

4 -0.300 
(0.067) 

a? 0.784 
(0.096) 

Q? 0.422 
(0.090) 

@ -0.084 
(0.037) 

Y2 

x3 

x4 

K 

9 

Mean In Lt -1.353 

-0.135 
(0.023) 
0.982 

(0.008) 
0.287 

(0.060) 
-0.037 
(0.017) 

2.397 
(0.108) 

-1.163 

-0.127 
(0.063) 
0.952 

(0.043) 
0.208 

(0.099) 
-0.043 
(0.040) 

-0.102 
(0.071) 
2.796 

(0.148) 

-1.238 

-0.141 
(0.023) 
0.972 

(0.012) 
0.219 

(0.042) 
-0.039 
(0.020) 

0.821 
(0.034) 
13.600 
(1.665) 

-1.179 

-0.142 
(0.030) 
0.982 

(0.009) 
0.223 

(0.046) 
-0.027 
(0.017) 

2.291 
(0.119) 

0.133 
(0.042 

-1.161 

-0.142 
(0.030) 
0.979 

(0.010) 
0.220 

(0.045) 
-0.030 
(0.015) 

1.823 
(0.227) 

0.132 
(0.039) 
-0.004 
(0.002) 

-1.159 
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Table 8: 

EGARCH model estimates for alternative conditional distributions: SF 
(Asymptotic robust standard errors in brackets) 

Parameter Normal Stud. t G. Charlier Mixture Skew. Stud. t Gen. Stud. t 

-0.231 -0.140 
(0.050) (0.071) 
0.642 0.662 

(0.119) (0.086) 
0.315 0.657 

(0.059) (0.109) 
-0.037 -0.062 
(0.029) (0.044) 

2.430 
(0.129) 

-0.260 
(0.057) 
0.616 

(0.125) 
0.367 

(0.070) 
-0.007 
(0.016) 

-0.304 
(0.058) 
0.659 

(0.106) 
0.432 

(0.081) 
-0.020 
(0.018) 

-0.300 
(0.040 
0.654 

(0.086) 
0.535 

(0.066) 
-0.048 
(0.031) 

2.362 
(0.138) 

-0.314 
(0.048) 
0.658 

(0.094) 
0.446 

(0.066) 
-0.057 
(0.036) 

0.347 
(0.237) 

-0.045 
(0.050) 
2.289 

(0.124) 
0.658 

(0.062) 
10.133 
(0.926) 

0.115 0.103 
(0.038) (0.024) 

-0.036 
(0.016) 

Mean In Lt -1.389 -1.267 -1.305 -1.274 -1.265 -1.254 
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Student t distribution is given by (43). The skewed Student t distribution is (43) with 04 = 0, 
whilst the Student t distribution is (43) with 81 = 84 = 0. The Gram Charlier and mixture 
distributions are given by (9) and (20) respectively. The normal distribution serves as a benchmark 
for comparing the estimates obtained from the nonnormal conditional distributions with the quasi- 
maximum likelihood estimates. The Student t and mixture distributions allow for kurtosis, but not 
skewness. The other three distributions, namely Gram Charlier, skewed Student t and generalized 
Student t distributions, allow for both skewness and kurtosis with varying degrees of flexibility. In 
total, forty-eight models are estimated. 

Parameter estimates assuming a GARCH conditional variance structure for the four currencies 
as well as for the six conditional distributions, are given in Tables 1 to 4. The corresponding 
EGARCH results are given in Table 5 to 8. The GARCH parameter estimates are very similar for 
all currencies and for all conditional distributional models with the exception of the Student t and 
normal results for the BP and JY currencies respectively. There is also a high degree of consistency 
in the EGARCH parameter estimates across both currencies and distributional specifications, with 
the possible exception of the normal results for the JY currency. 

A t-test based on 81 = 0, using either the skewed Student t or generalized Student t parameter 
estimates, shows that BP is the only currency where there is no significant skewness present in the 
conditional distribution. This is true for both GARCH and EGARCH conditional variance models. 
A similar test can also be conducted based on testing X3 = 0, using the Gram Charlier results. 
However, as will be demonstrated below, the results based on the Gram Charlier distribution are 
less reliable than either the skewed or generalized Student t distributions as the Gram Charlier 
distribution fails a number of diagnostic tests which the other two distributions do not. 

The relatively small estimates of the degrees of freedom parameter y2, for all models point 
towards fatness in the tails of the conditional distributions. Further evidence of fatness in the 
tails is given by the estimates of the mixture distribution. The parameter estimates of g range 
from 9.646 to 14.556, impling that the variance of the high variance distribution is larger than the 
variance of the low variance distribution by a factor of more than 10 on average. Furthermore, as 
the parameter estimates of 1 - K, are around 0.25, this suggests than approximately one quarter of 
returns come from the high variance distribution. 

A test of the generalized Student t distribution can be formulated by constructing a t-test of the 
hypothesis 04 = 0. However, this test statistic does not have the standard asymptotic distribution 
as the test is being conducted on the boundary of the parameter space. A more convenient approach 
is to construct a Lagrange multiplier test 

(49) 

where I($) is the information matrix, $ = {a, y, 6’1,04}, and $ = {&T, $1, 0) corresponds to the 
constrained maximum likelihood estimates associated with the skewed Student t distribution. This 
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Table 9: 

Ljung-Box test of zt, 20 lags, p-values 
Distribution GARCH EGARCH 

BP DM JY SF BP DM JY SF 
Normal 0.006 0.641 0.105 0.615 0.004 0.656 0.106 0.675 
Stud. t 0.009 0.771 0.114 0.783 0.008 0.756 0.142 0.827 
G. Charlier 0.007 0.668 0.039 0.652 0.004 0.669 0.060 0.698 
Mixture 0.008 0.736 0.074 0.743 0.006 0.729 0.102 0.778 
Skew. Stud. t 0.009 0.770 0.117 0.788 0.003 0.657 0.088 0.637 
Gen. Stud. t 0.009 0.764 0.087 0.751 0.002 0.655 0.062 0.611 

Table 10: 

Ljung-Box test of ~2, 20 lags, p-values 
Distribution GARCH EGARCH 

BP DM JY SF BP DM JY SF 
Normal 0.047 0.298 0.259 0.039 0.043 0.205 0.396 0.056 
Stud. t 0.033 0.087 0.986 0.006 0.022 0.069 0.807 0.013 
G. Charlier 0.041 0.252 0.472 0.026 0.044 0.167 0.307 0.040 
Mixture 0.038 0.135 0.908 0.014 0.031 0.096 0.590 0.023 
Skew. Stud. t 0.033 0.087 0.975 0.006 0.018 0.225 0.729 0.075 
Gen. Stud. t 0.035 0.095 0.984 0.011 0.018 0.225 0.674 0.060 

test statistic is distributed asymptotically as XT; see Rogers (1986). Alternatively, a test of the 
Student t distribution could be obtained by defining 4 = (a, y, &, 0} where now all parameter 
estimates are obtained from the Student t distribution. In this case the test statistic (49) is 
distributed asymptotically as x2. 2 This latter test was performed for all currencies and for both 
conditional variance models with the result that there was a very strong rejection of the null 
hypothesis that the underlying distribution is Student t. 

Some diagnostics for each model are given in Tables 9 and 10. The Ljung-Box test of the stan- 
dardized residuals zt, shows that there is no significant autocorrelation structure at the one percent 
level in the DM, JY and SF currencies. This is true for both the GARCH and EGARCH conditional 
variance versions of the model. In contrast, the BP currency exhibits significant autocorrelation 
for all six conditional distributions and both conditional variance specificationsi* 

The Ljung-Box test of the squared standardized residuals zt, 2 show that there is no significant 

14Comparing this result with that obtained by Baillie and Bollerslev (1990), suggests that use of hourly dummies 
in the conditional mean specification can eradicate the autocorrelelation problem. 
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ARCH structure at the one percent level in the BP, DM and JY currencies for both GARCH and 
EGARCH specifications. For the SF currency, there is no presence of ARCH at the one percent 
level assuming an EGARCH conditional variance. There is significant ARCH at the one percent 
level assuming a GARCH conditional variance structure for both the Student t and skewed Student 
t distributions, but not the other conditional distributions. 

B. Estimates of the Conditional Distributions 

Some selected statistics on the conditional distribution of zt are given in Table 11. All models 
generate sample means of zt close to the theoretical value of 0.0. In terms of the sample variance of 
xt, the Student t distribution performs the worst as it results in sample variances between 0.503 and 
0.721, which does not compare favourably with the theoretical value of 1.0. The sample skewness 
statistics also provide evidence against the Student t distribution which has a theoretical value of 
0.0. Both the sample skewness and kurtosis statistics provide strong evidence against the normal 
distribution which has theoretical values of 0.0 and 3.0 respectively. 

Further evidence on the suitability of the conditional distributions is given in Table 12 which 
compares the heights of the empirical (E) and theoretical (T) distributions at z = 0. These results 
show strong rejection of normality with the empirical values consistently around 0.650 for all models, 
compared with the theoretical value of 0.399. The Gram Char-her distribution also performs badly 
as it generates heights of the conditional distribution comparable to the normal distribution. For 
the remaining distributions, namely the Student t, mixture and the skewed and generalized Student 
t distributions, there is a good match between the heights of the empirical and theoretical densities. 

Figures 1 and 2 give further information of the goodness of fit of the theoretical conditional 
distributions, f(zt). In Figure 1, the six conditional distributions are compared with the empirical 
distribution g(zt), assuming a GARCH conditional variance, for the BP currency. The empirical 
distribution is computed nonparametrically using a normal kernel. In Figure 2, the conditional 
variance is EGARCH. A formal test of goodness of fit is given in Table 13, which reports the 
p-values for th e standard chi-square goodness of fit test. These results provide further evidence 
against the normal as well as the Gram Charlier distributions, while providing strong acceptance 
of the other four conditional distributions. 

C. Estimates of the Unconditional Distributions 

It is not possible to obtain closed form, analytical expressions of the unconditional distribution 
for the discrete ARCH model. The approach adopted here is to simulate this density using the 
following steps: 

1. A sample of ~1, ~2, . . . . XT, random numbers are drawn from one of the six conditional densities, 
where T = 500, is chosen. 
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Table 11: 

Selected statistics on the conditional distribuition of zt 
Distribution GARCH EGARCH 

BP DM JY SF BP DM JY SF 
Mean 

Normal 0.004 -0.003 -0.005 -0.005 0.005 -0.003 -0.004 -0.004 
Stud. t 0.004 -0.004 0.001 -0.005 0.003 -0.004 0.002 -0.004 
G. Charlier 0.004 -0.003 0.000 -0.006 0.004 -0.003 0.001 -0.005 
Mixture 0.005 -0.004 0.001 -0.006 0.004 -0.004 0.002 -0.005 
Skew. Stud. t 0.005 -0.005 0.001 -0.007 0.004 -0.002 0.004 -0.002 
Gen. Stud. t 0.005 -0.005 0.001 -0.006 0.004 -0.002 0.004 -0.002 

Variance 
Normal 1.000 1.000 1.000 1.000 1.000 1.000 1.002 1.000 
Stud. t 0.652 0.697 0.503 0.531 0.674 0.721 0.629 0.555 
G. Charlier 0.962 0.918 0.901 0.988 0.971 0.912 0.908 0.988 
Mixture 1.000 1.000 1.001 1.000 1.001 0.999 1.007 1.000 
Skew. Stud. t 0.905 0.940 1.025 0.871 0.830 0.879 0.944 0.816 
Gen. Stud. t 1.002 1.002 1.044 1.001 0.947 0.968 0.992 0.967 

Skewness 
Normal -0.185 0.180 -0.225 0.102 -0.172 0.189 -0.161 0.135 
Stud. t -0.089 0.106 -0.127 0.026 -0.107 0.105 -0.054 0.047 
G. Charlier -0.165 0.159 -0.088 0.082 -0.170 0.172 -0.046 0.102 
Mixture -0.172 0.177 -0.266 0.096 -0.188 0.175 -0.088 0.115 
Skew. Stud. t -0.145 0.163 -0.490 0.050 -0.127 0.155 -0.050 0.153 
Gen. Stud. t -0.171 0.177 -0.534 0.086 -0.154 0.179 -0.055 0.185 

Kurtosis 
Normal 8.788 10.941 13.474 8.598 8.388 10.741 12.582 8.646 
Stud. t 3.833 5.806 6.330 2.587 3.963 6.020 7.801 2.860 
G. Charlier 8.222 9.374 12.587 8.485 7.967 9.048 12.033 8.506 
Mixture 8.952 11.691 20.387 9.000 8.614 11.355 17.420 9.028 
Skew. Stud. t 7.390 10.590 25.458 6.973 5.762 8.267 17.133 5.697 
Gen. Stud. t 9.025 11.972 26.529 9.062 7.479 10.015 18.606 7.949 
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Table 12: 

Heights of the empirical (E) and theoretical (T) conditional distributions at z = 0 
Distribution Type GARCH EGARCH 

BP DM JY SF BP DM JY SF 
Normal E 0.630 0.648 0.689 0.685 0.626 0.644 0.678 0.682 

Stud. t 

G. Charlier 

Mixture 

Skew. Stud. t 

Gen. Stud. t 

T 

E 
T 

E 
T 

E 
T 

E 
T 

E 
T 

0.399 0.399 0.399 0.399 0.399 0.399 0.399 0.399 

0.782 0.779 0.982 0.944 0.765 0.761 0.861 0.920 
0.778 0.760 1.022 0.880 0.759 0.740 0.886 0.857 

0.643 0.676 0.722 0.689 0.635 0.675 0.709 0.687 
0.399 0.394 0.394 0.397 0.401 0.395 0.397 0.399 

0.631 0.649 0.689 0.686 0.626 0.645 0.675 0.684 
0.601 0.581 0.634 0.623 0.601 0.572 0.626 0.620 

0.664 0.672 0.679 0.738 0.660 0.667 0.676 0.734 
0.663 0.656 0.710 0.693 0.657 0.648 0.701 0.689 

0.631 0.650 0.676 0.686 0.626 0.645 0.669 0.683 
0.668 0.664 0.720 0.773 0.663 0.656 0.710 0.767 

Table 13: 

Chi-square goodness of fit test of the conditional distribution: p-values 
Distribution GARCH EGARCH 

BP DM JY SF BP DM JY SF 
Normal 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Stud. t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
G. Charlier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Mixture 0.999 0.894 0.775 0.940 0.997 0.816 0.921 0.852 
Skew. Stud. t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Gen. Stud. t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Figure 1: Conditional distributions, BP currency, GARCH: theoretical (continuous line) empirical 
(broken line). 
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Skewed Student I Generol~red Student I 

Figure 2: Conditional distributions, BP currency, EGARCH: theoretical (continuous line) empirical 
(broken line). 
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2. A sample path of length T, is generated for the simulated data yt, from the ARCH model 

where ht depends on the conditional variance specification 

GARCff : ht = af + a$& + afht+ 
IxTARCH ln(ht) = a!: + ~@ln(h~-~) + d? jm/q + @ (:ijt&q ) 

and the parameters are chosen as the maximum likelihood estimates given in Tables 1 and 8. 

3. Steps 1 and 2 are repeated N times, where N = 500, is chosen, thereby generating N sample 
paths of length T. 

4. The distribution of jj is based on the last observation, that is the Tth observation, from each 
of the N sample paths. A kernel density is then used to compute the theoretical density 
based on the N observations. 

Heights of the theoretical distribution, f(y), are compared with the heights of the empirical 
distribution, g(y), in Table 14. For the empirical distribution, heights are recorded at the mode of 
the density [max g(y)], as well as at y = 0 [g(y = O)]. The heights of the six theoretical densities 
are recorded at the mode of the theoretical density [maxf(y)] and at the mode of the empirical 
density [f(gmode>]. 

The results in Table 14 provide further evidence against the normal distribution: the peaks of 
the empirical densities are generally between 0.6 and 0.7, whereas the conditional normal model 
assuming either GARCH or EGARCH conditional variances achieves much smaller peaks at between 
0.4 and 0.45. The Student t distribution model with a GARCH conditional variance specification 
is the opposite to the normal model as it tends to generate theoretical peaks which are in excess 
of the empirical peaks. The generalized Student t distribution performs the best overall in terms 
of all exchange rates and all conditional variance specifications, whereas the Student t distribution 
with and EGARCH conditional variance performs very well. 

Further information of the goodness of fit of the theoretical distributions is given in Figures 3 
(GARCH) and 4 (EGARCH), which give plots of the empirical g(yt), and theoretical f(yt), uncon- 
ditional distributions for the BP currency. A more formal test based on the chi-square goodness 
of fit test is given in Table 15 for each of the six conditional distributions and for both conditional 
variance specifications. These results show that both the skewed Student t and generalized Student 
t distributions consistently generate p-values in excess of ten percent for all exchange rates and for 
both conditional variances specifications. 
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Table 14: 

Heights of the empirical g(y) and theoretical f(y) unconditional distributions 
Distribution Tvw GARCH EGARCH 

Empirical 

_ _ 
BP DM JY SF BP DM JY SF 

maxg(y) 0.642 0.652 0.708 0.678 0.642 0.652 0.708 0.678 
dY = 0) 0.642 0.652 0.708 0.678 0.642 0.652 0.708 0.678 

Normal max f(y) 0.401 0.420 0.451 0.399 0.418 0.399 0.446 0.426 
f khode) 0.396 0.404 0.451 0.361 0.399 0.398 0.429 0.400 

Stud. t max f(Y) 0.752 0.679 1.710 1.127 0.680 0.635 0.746 0.725 
f kkmde) 0.727 0.675 1.710 1.127 0.663 0.633 0.745 0.725 

G. Charlier max f(y) 0.601 0.516 0.597 0.491 0.566 0.513 0.559 0.487 
f khode) 0.581 0.499 0.592 0.488 0.550 0.499 0.554 0.484 

Mixture max f(y) 0.586 0.530 0.584 0.520 0.577 0.562 0.536 0.538 
f khnode) 0.586 0.525 0.584 0.520 0.577 0.561 0.532 0.538 

Skew. Stud. t max f(y) 0.594 0.557 0.587 0.541 0.583 0.546 0.604 0.528 
f khode) 0.594 0.554 0.587 0.541 0.583 0.541 0.604 0.528 

Gen. Stud. t max f (Y> 0.620 0.571 0.592 0.622 0.611 0.561 0.605 0.611 
0.611 0.559 0.605 0.611 f bhode ) 0.620 0.571 0.592 0.622 

Table 15: 

Chi-square goodness of fit test of the unconditional distribution: p-values 
Distribution GARCH EGARCH 

BP DM JY SF BP DM JY SF 
Normal 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Stud. t 0.067 0.994 0.000 0.000 0.792 1.000 0.999 0.157 
G. Charlier 0.738 0.658 0.708 0.095 0.378 0.570 0.125 0.037 
Mixture 0.992 0.852 0.185 0.197 0.958 0.919 0.024 0.383 
Skew. Stud. t 0.983 0.975 0.161 0.652 0.950 0.905 0.481 0.443 
Gen. Stud. t 0.999 0.991 0.152 0.993 0.997 0.963 0.446 0.988 
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Figure 3: Unconditional distributions, BP currency, GARCH: theoretical (continuous line) empiri- 
cal (broken line). 
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Normal Student I 

Figure 4: Unconditional distributions, BP currency, EGARCH: theoretical (continuous line) em- 
pirical (broken line). 
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V. CONCLUSIONS 

This paper has provided a parametric framework for estimating conditional variance models 
based on a flexible class of distributions referred to as generalized Student t. An important feature 
of the generalized Student t distribution is that it is flexible enough to exhibit various distributional 
characteristics such as leptokurtosis and asymmetry. The generalized Student t distribution was 
shown to nest both the normal and Student t distributions, and to be related to the Gram Charlier 
and mixture distributions. This distribution was also shown to correspond to the unconditional 
distribution of a continuous time model used to approximate a discrete ARCH model. 

Empirical models based on GARCH and EGARCH conditional variance specifications (where 
the conditional distribution was generalized Student t) were formulated and estimated for four 
currencies using intra-day exchange rate returns. These models were compared with models based 
on other conditional distributions including normal, Student t, Gram Charlier and mixture of 
normals, as well as a skewed Student t distribution. The generalized Student t distribution was 
found to perform uniformly better than these other distributions in modelling both the empirical 
conditional and unconditional distributions. One reason for the superiority of the generalized 
Student t distribution was that significant skewness was identified in the DM, JY and SF exchange 
rate returns that was not captured by the symmetric distributions. 
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