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Abstract 

Nominal interest rate pegging leads to instability in an IS-LM model 
with a vertical long-run Phillips curve and backward-looking inflation 
expectations. However, it does not lead to instability in several large 
multicountry econometric models, apparently primarily because these models 
have nonvertical long-run Phillips curves. Nominal interest rate pegging 
leads to price level and output indeterminacy in a model with staggered 
contracts and rational expectations. However, when a class of money 
supply rules with interest rate smoothing is introduced, and interest rate 
pegging is viewed as the limit of interest rate smoothing, the price level 
and output are determinate. 
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I. Introduction and Conclusions 

For at least two centuries economists have been studying the policy 
of nominal interest rate pegging. L/ In this paper we address two 
questions in the ongoing debate on the feasibility and desirability of 
this policy. First, does it lead to dynamic instability when inflation 
expectations are backward looking? Second, does it lead to price level 
indeterminacy when inflation expectations are rational? We derive several 
theoretical results and compare some of them with the econometric 
simulation results presented at the conference on Monetary Aggregates and 
Financial Sector Behavior in Interdependent Economies sponsored by the 
Board of Governors of the Federal Reserve System. 

In some of the simulation experiments designed for the Federal 
Reserve conference, it is specified that nominal interest rates should be 

pegged. Results were reported at the conference for these experiments for 
all but one of the models with backward-looking expectations (the Federal 
Reserve Board's MPS model, the Federal Reserve Board's MCM model, the 
Project LINK World Model, the Japanese Economic Planning Agency's EPA 
model, and the OECD's INTERLINK model). Results were reported to us after 
the conference for a related esperiment for the remaining model with 
backward-looking espectations (the United Kingdom National Institute's GEM 
model). These results provide empirical answers to the dynamic 
instability question. 

No results were reported for the experiments with nominal interest 
rates pegged for the one model with rational expectations, the Taylor 
model. We can think of two possible explanations for why no results were 
reported. Taylor may have believed that nominal interest rate pegging 
would lead to price level indeterminacy in his model and that, therefore, 
there was no reason even to attempt the experiments. Alternatively, he 
may have believed that the experiments could be performed in principle but 
may have been unable to perform them for technical reasons. 

Our paper is divided into six sections. In Section II we review the 
Wicksellian argument that with backward-looking inflation expectations an 
economy is dynamically unstable when the authorities peg the nominal 
interest rate. First, we show that this argument is correct in the most 
basic closed-economy IS-LM model with an expectations-augmented Phillips 
curve and adaptive expectations. The logic of the argument is clear. 
Consider an increase in the nominal interest rate peg. This increase 
raises the real interest rate because expected inflation does not change 
in the first period. The increase in the real interest rate lowers 
aggregate demand. The decrease in aggregate demand causes actual 
inflation to fall. The fall in actual inflation causes a decrease in nest 

I./ For references to both early and recent writings on the policy of 
nominal interest rate pegging, see McCallum (1986). 



- 2 - 

period's expected inflation. The decrease in next period's expected 
inflation causes larger decreases in nest period's actual inflation and 
the following period's expected inflation. The process repeats itself, 
and both actual and expected inflation continue to fall. (In Appendix A 
we confirm that a two-country version of the model is also dynamically 
unstable.) Next, we consider an alternative version of the model with a 
Phillips curve more like those used in the econometric models. The 
alternative version is dynamically unstable under a reasonable 
assumption. 

In Section III we ask whether the results for one of the simulation 
experiments with nominal interest rate pegging are consistent with the 
prediction of dynamic instability. The modelers were asked to report the 
ef-fects of increasing the short-term nominal interest rate in one country 
by 100 basis points above the baseline throughout the simulation period 
while holding the short-term nominal interest rates in the other countries 
on the baseline. L/ Many of the results seem inconsistent with the 
prediction of dynamic instability. Only the results for the United States 
in the MPS model are unambiguously consistent with this prediction. 
Results for a related experiment in the GEM model also seem to be 
consistent with this prediction. 

Section IV is a consideration of two possible reasons for the 
apparent inconsistency of many of the simulation results with the 
prediction of dynamic instability. We were able to obtain equation 
listings for the MPS, MCM, EPA, and INTERLINK models. All of these models 
except the MPS model appear to have nonvertical long-run Phillips curves. 
We modify the theoretical model by making the long-run Phillips curve 
nonvertical and show that the resulting model may be dynamically stable. 
The MPS model and the EPA model allow for wealth effects on consumption. 
We add a wealth effect of the type in the EPA model to the theoretical 
model and show that the resulting model may be dynamically stable even in 
the presence of a vertical long-run Phillips curve. 

-L/ They were also asked to report the effects of simultaneously 
increasing the short-term nominal interest rates in the United States, 
Germany, and Japan by 100 basis points above the baseline throughout the 
the simulation period while holding the short-term nominal interest rates 
in the other countries on the baseline. We have not analyzed the results 
for this experiment closely. In the theoretical models we analyze, 
dynamic instability with nominal interest rate pegging under bac.kward- 
looking expectations is a general characteristic; that is, the models are 
unstable no matter what the source of the shock. For this reason we 
decided to focus our attention on the results of only one of the 
simulation experiments with nominal interest rate pegging. 
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Next we turn to models with rational expectations. In their classic 
article, Sargent and Wallace (1975) show that with rational inflation 
expectations the price level is indeterminate if the authorities peg the 
nominal interest rate. 1/ Sargent and Wallace assume that the 
authorities peg the nominal interest rate by simply standing ready to 
exchange securities for money at the chosen rate. With nominal interest 
rate pegging in the Sargent-Wallace model there are multiple nonexplosive 
solutions for the price level, but the values of the real variables are 
uniquely determined. 

In Section V we spell out the implications of nominal interest rate 
pegging in a Taylor (1980) model with staggered wage contracts and 
rational expectations. We obtain a result that is closely related to the 
Sargent-Wallace indeterminacy result. When the authorities peg the 
nominal interest rate in the Taylor model, there are multiple nonexplosive 
solutions for both nominal and real variables. The difference in results 
between Sargent-Wallace-type models and the Taylor model arises because of 
an important difference in assumptions. In Sargent-Wallace-type models the 
real variables depend on the nominal variables only through deviations 
between the actual and expected values of the nominal variables. However, 
in the Taylor model current values of the real variables depend on lagged 
values of the nominal variables. 

Canzoneri, Henderson, and Rogoff (1983), Dotsey and King (1983), and 
McCallum (1986) all have concluded that a policy of pegging the nominal 

1/ Sargent and Wallace (1975) claim to have established a much more 
general result regarding nominal interest rate policy rules. They assert 
that with rational expectations the price level is indeterminate for any 
rule in which the current nominal interest rate depends on lagged values 
of endogenous and exogenous variables. It is now clear that this 
assertion is incorrect. 

McCallum (1981) puts forward a nominal interest rate policy rule for 
which the price level is determinate in a Sargent-Wallace model. In 
McCallum's rule the authorities give some weight to the objective of 
making the expected value of the money supply equal to a target value. As 
a result, the current nominal interest rate depends on the expected value 
of the current price level based on lagged information. According to 
McCallum, his result "does not formally contradict" the Sargent-Wallace 
assertion because the parameters in the Sargent-Wallace rule are 
"autonomous -- i.e. unrelated to behavioral parameters" while the 
parameters of his rule are related to behavioral parameters. 

Sims (1988) puts forward a counterexample that does formally 
contradict the Sargent-Wallace assertion. In Sims' rule the current 
nominal interest rate depends on the lagged price level. For a range of 
values of the parameter relating the interest rate to the lagged price 
level, the price level is determinate in a Sargent-Wallace model. 
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interest rate by simply standing ready to exchange securities for money at 
the chosen rate is an incompletely specified policy. lJ Canzoneri, 
Henderson, and Rogoff and McCallum introduce money supply rules with 
nominal interest rate smoothing into Sargent-Wallace-type models and show 
that when interest rate pegging is viewed as the limit of interest rate 
smoothing, the price level is determinate. 

In Section VI we introduce money supply rules from a class with 
nominal interest rate smoothing into our Taylor model. We show that for 
each rule in this class the price level remains determinate as the 
smoothing parameter increases without limit. We also explain what happens 
when the target nominal interest rate is increased permanently or 
temporarily and the smoothing parameter is very large. A permanent 
increase in the target nominal interest rate must raise inflation by the 
same amount in the long run. The real interest rate is fixed in the long 
run, so if the nominal interest rate is to rise, the expected rate of 
inflation and, therefore, the actual rate of inflation must rise by the 
same amount. The policy may either raise or lower output in the short 
run. The policy may be implemented using different rules in the class we 
consider. While the different rules have the same implication for the 
nominal interest rate, they have different implications for output and 
the other variables. 

II. The Basic Theoretical Model with Backward-Lookine Expectations 

In this section we review the Wicksellian argument that with 
backward-looking inflation expectations the economy is dynamically 
unstable when the authorities peg the nominal interest rate. We show that 
this argument is correct in the most basic closed-economy IS-LM model with 
an expectations-augmented Phillips curve and adaptive expectations. We 
also show that under a reasonable assumption this argument is robust to a 
replacement of the Phillips curve with one more like those used in the 
econometric models. 

The basic model cons ists of the follow ing three equations: 

Y, = - G - Tt>, (1) 

1/ In contrast, Benavie and Froyen (1988) have concluded that an 
interest rate pegging policy of the Sargent-Wallace type is a completely 
specified policy. 
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Pt+l - P, = o'y, + At, 

Xt+l - At = P(Pt+l - P, - Q. (3) 

y is (the logarithm of) output, r is the nominal interest rate, K is the 
expected rate of inflation, and p is (the logarithm of) the price level. 
It is assumed that (the logarithm of) the natural rate of output is zero. 
The bar over the nominal interest rate indicates that it is being pegged. 
Equation (1) is the goods market equilibrium condition. Output must equal 
aggregate demand which depends negatively on the expected real interest 
rate (a > 0). Equation (2) is an expectations-augmented Phillips curve. 
The rate of inflation between today and tomorrow depends positively on 
today's gap between actual and natural output (a’ > 0) and on the expected 
rate of inflation between today and tomorrow. Today's price level is 
completely predetermined. We begin with this version of the expectations- 
augmented Phillips curve because it yields a very clear result. A more 
conventional version is analyzed below. Equation (3) is the expectations 
formation equation. Agents increase their expected rate of inflation by 
some fraction of the gap between actual inflation and expected inflation 
(0 < p < 1). 

An increase in the "ornina interest rate peg sets off a deflationary 
spiral. An increase in r in period t lowers yt from equation (1). The 
drop in yt lowers pt+l-pt from equation (2). The fall in pt+l-pt lowers 
7rt+l from equation (3). A decrease in rt+l causes both pt+2-pt+l and 
7rt+2 to decrease by more as esplained below. The process repeats itself, 
and both actual and expected inflation continue to fall. 

Why does a decrease in 7rt+l cause both pt+2-pt+l and Tt+2 to 
decrease by more? A decrease in nt+l has a one-for-one direct effect on 
pt+2-pt+l and also has a negative indirect effect on pt+2-pt+l since it 
lowers yt+l. A decrease in 7rt+l has a one-for-one direct effect on 7rt+2 
and also has a negative indirect effect by reducing pt+2-pt+l-nt+l. 

There is a more formal way of summarizing the behavior of the model. 
Substituting equation (1) into equation (2) yields 

- 

pt+l - Pt 
= (1 + a'u)7r 

t 
- a'ur. 

Substituting equation (4) into equation (3) yields a first-order 
difference equation in 7r: 

(4) 

?+l 
= (1 + pa’a)7r 

t 
- pa’or. (5) 
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The root of this equation is greater than one since p, a’, and u are 
positive. Therefore, the economy of equations (i), (2), and (3) is 
unstable. It follows from equation (5) that if r is increased 7rt falls 
without limit. Equation (4) implies that if 7rt falls without limit, 
pt+l-pt also falls without limit. 

In econometric models it is conventional to employ an expectations- 
augmented Phillips curve slightly different from equation (2). In the 
conventional Phillips curve, the rate of inflation between yesterday and 
today depends positively on today's gap between actual and natural output 
and on the expected rate of inflation between yesterday and today. 
Today's price level is not predetermined. An alternative version of the 
basic theoretical model with a conventional expectations-augmented 
Phillips curve is given by the following equations: 

Y, = - ,<r - yJ, 

Pt - P,-1 = QY, + nt-l' 

=t - =t-1 = P(P, - P,-1 - ntJ). 

Under a reasonable assumption stated below, an increase in the 
nominal interest rate peg sets off a deflationary spiral in the 
alternative version just as in the first version. An increase in r in 
period t creates an excess supply of goods. yt must fall to remove this 
excess supply. A fall in yt is associated with decreases in pt-pt-1 and 

"t. A decrease in rt causes both 7rt+l and pt+l-pt to decrease by more. 
The process repeats itself, and both expected and actual inflation 
continue to fall. 

In order to obtain these results, it must be assumed that the 
decrease in 7rt associated with a fall in yt in the goods market (l/o) is 
greater than the decrease in 7rt associated with a decrease in yt through 
the Phillips curve and the expectations formation equation (pa). That is, 
it must be assumed that 1-pao > 0. This assumption guarantees that a fall 
in yt reduces excess supply. The negative direct effect of a unit 
decrease in yt on excess supply is one. However, there is also a positive 
indirect effect. A unit decrease in yt reduces pt-pt-1 by a from 
equation (7), reduces 7rt by pa from equation (8), and increases excess 
supply by pao from equation (6). Therefore, a fall in yt reduces excess 
supply if and only if 1-pao > 0. This assumption also guarantees that a 
decrease in 7rt-l leads to a larger decrease in nt. A decrease in 7rt-l 
would decrease rt y b the same amount if pt-pt-l-rt-l did not depend on 

nt. A decrease in "t-1 raises the left-hand side of equation (8) and has 
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no effect on pt-pt-l-xt-l because the decrease in rt-l lowers pt-pt-1 by 
the same amount. However, pt-pt-l-7rt-l does depend on rt. A decrease in 
7rt lowers yt by u from equation (6), lowers pt-pt-1 by au from equation 
(7), and lowers the right-hand side of equation (8) by pau. Therefore, a 
decrease in 7rt-l leads to a larger decrease in nt if and only if 
1-pau > 0. Finally, this assumption guarantees that a decrease in rt-l 
causes a larger decrease in pt-pt-1. A decrease in 7rt-l has a one-for- 
one direct effect on pt-pt-1. It also has a negative indirect effect if 
and only if 1-pau > 0. It reduces 7rt, and the reduction in 7rt reduces yt. 

More formally, substituting equation (6) into equation (7) yields 

- 

Pt 
- ptWl - aart + ntml - our. 

Substituting equation (9) into equation (8) yields a first-order 
difference equation in n: 

1 
=t = 

paa ; 
1 - pau "t-l - 1 - pau * 

(9) 

(10) 

Under our assumption that 1-pau > 0, the root of this equation is greater 
than one. Therefore, the economy of equations (61, (7), and (8) is 
unstable. It follows from equation (10) that if r is increased zt falls 
without limit. Equation (9) implies that if 7rt falls without limit, 
pt-pt-1 also falls without limit. 

Of course, the condition 1-pau > 0 is sufficient but not necessary 
for instability. The economy is unstable if and only if 1-pau > -1. 
However, if 1-pau < 0, expected and actual inflation oscillate between 
positive and negative values. Our assumption that 1-pau > 0 seems all the 
more reasonable because it rules out such implausible oscillatory 
behavior. 

Chart 1 shows the paths of the price level and the inflation rate 
following an increase in the nominal interest rate peg in the alternative 
version. The parameter values used to generate Chart 1 were p = 0.2, 
a = 0.2, and u = 1. 

III. Some Simulation Results 

In this section we compare the results of one of the simulation 
experiments designed for the Federal Reserve conference with the 
predictions of the theoretical model. The modeling groups were asked to 
report the effects of permanently raising the short-term nominal interest 
rate by 100 basis points above the baseline in one country while holding 
short-term nominal interest rates fixed on the baseline in the remaining 
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countries. Results for this experiment were reported for all the models 
with backward-looking expectations, with the exception of the GEM model. 
Results for a related experiment were reported for the GEM model after the 
conference. 

The simulation experiments were performed in multicountry econometric 
models, but the theoretical model is a closed economy model. Therefore, 
it might seem inappropriate to compare the simulation results with the 
theoretical predictions. However, as we show in Appendix I, the 
theoretical finding that nominal interest rate pegging with backward- 
looking expectations leads to dynamic instability generalizes to the case 
of two countries with nominal interest rates pegged at different levels. 
For this reason we feel justified in proceeding with a comparison of the 
simulation results and the theoretical predictions. 

Charts 2, 3, 4, 5, and 6 plot the deviations of price levels and 
inflation rates from the baseline for particular countries. The 
deviations for each country are the result of increasing the short-term 
nominal interest rate in that country by 100 basis points above the 
baseline while holding short-term nominal interest rates in other 
countries on the baseline. 

Chart 2 shows results for the Federal Reserve's MPS model. The 
deviations of the U.S. price level and inflation rate are clearly 
consistent with the pre'lcticlls of the theoretical model. Raising the 
short-term nominal interest rate generates an accelerating deflation. 

Chart 3 shows results for the Federal Reserve's MCM model. It is not 
clear whether the deviations of the U.S., German, and Japanese price 
levels and inflation rates are consistent with the predictions of the 
theoretical model. Deflation may be accelerating or it may be approaching 
a steady state value. Clearly, even if deflation is accelerating, it is 
not accelerating nearly so rapidly as in the MPS model. 

Chart 4 shows results for the Japanese Economic Planning Agency's EPA 
model. The deviations of the U.S., German, and Japanese price l.evels and 
inflation rates are clearly inconsistent with the results of the 
theoretical model. Price levels fall below baselines and then rise back 
toward them. The U.S. and Japanese inflation rates fall increasingly 
below their baselines for a while, then begin rising toward them, and 
eventually rise above them. The German inflation rate falls below its 
baseline, rises back to it, falls increasingly below it, rises back to it, 
and eventually rises above it. It is not clear whether the inflation 
rates are approaching new steady-state values, nor is it clear whether any 
new steady-state inflation rates would be above or below the baseline. 

Chart 5 presents the simulation results for the OECD's INTEIRLINK 
model. The price levels and inflation rates in the United States, 
Germany, and Japan do not appear to behave as predicted by the theoretical 



- 8a - 

Chat-t 1 
Adaptive Expectations Theoretical Model 

Price 

I I I I I I I I I I I 

Inflation Rate 

0.020 

0.010 

0.010 

0.020 

0.030 

0.040 

0.050 

0.060 

0.070 

0.005 

0.005 

0.025 





- 8b - 

Chart 2 
MPS Model 
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Chart 3 
MCM Model 
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Chart 4 
EPA Model 
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Chart 5 
INTERLINK Model 
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Chart 6 
Project LINK Model 
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mode 1. All three inflation rates appear to be stabilizing. It looks as 
though the U.S. and Japanese inflation rates are stabilizing at values 
below the baseline. In the INTERLINK simulation as in the EPA simulation, 
the German inflation rate is the most erratic of the three. It is not 
clear whether the German inflation rate is stabilizing at a value above or 
below the baseline. 

Finally, Chart 6 shows the results for Project LINK's world 
econometric model. None of the price levels and inflation rates appear to 
behave as predicted by the theoretical model. There appears to be a 
permanent decrease in the German inflation rate and a very slight 
permanent increase in the U.S. inflation rate. The Japanese inflation 
rate first drops and then gradually drifts back to its baseline value. 

Results were reported to us for a related experiment for the GEM 
model after the conference. In this experiment, the short-term nominal 
interest rates in all the G-7 countries were raised by 100 basis points 
above the baseline throughout the simulation period. The results for this 
experiment were consistent with the theoretical model. Inflation rates 
became increasingly negative over time. I./ 

Since so many of the results were inconsistent with the theoretical 
model, we decided to take a closer look at the empirical models. Of the 
five models in Charts 2 through 6, we were able to obtain equation 
listings for four: MPS, MCM, EPA, and INTERLINK. We conclude that the 
most important difference between the theoretical model and the empirical 
models is that all of the empirical models except the MPS have nonvertica 
long-run Phillips curves. 2/ In every case that we could check, stable 
inflation-rate trajectories were associated with models that allow a 
permanent trade-off of output for inflation. A second important 
difference between our theoretical model and the empirical models is that 
the MPS and EPA models allow for wealth effects on consumption. In the 
next section we demonstrate that the dynamic paths shown in Charts 2 
through 6 are not inconsistent with the theoretical model when it is 
modified to include either a nonvertical Phillips curve or a wealth 
effect. 

1/ Simon Wren-Lewis of the United Kingdom National Institute reported 
these results to us by letter. 

2/ We would like to thank Flint Brayton of the MPS modeling group for 
suggesting that the differences between the results for the MPS model and 
those for the other models represented at the Conference might be due to 
differences in the slopes of their long-run Phillips curves. 
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IV. Modifications to the Basic Theoretical Model 

First, we modify the basic theoretical model to allow for a 
nonvertical Phillips curve. The modified model is 

Y, = - 4; - rt) I (11) 

Pt - P,-1 = QY, + ant-l, 

At - "t-l = P(P, - P,-1 - n&. 

(12) 

(13) 

We assume that 0 < w 5 1. If o = 1, the model of equations (11) through 
(13) is identical to the alternative version of Section II, and if 
0 < w < 1, the Phillips curve is nonvertical. 

Analysis of the modified model reveals that the impact effect of a 
higher interest rate is the same as in the alternative basic model. We 
continue to assume that 1-paa > 0, so an increase in r in period t causes 
yt to fall. A fall in yt is associated with decreases in pt-pt-1 and nt. 
However, with 0 < w < 1 a decrease in mt may cause both mt+l and pt+l-pt 
to decrease by less as explained below. If it does, the system is stable 
and inflation levels off at a rate below its original value. 

With 0 < w < 1 a decrease in nt-l may cause both 7rt and pt-pt-1 to 
decrease by less. In these circumstances a unit decrease in xt-l not 
only raises the left-hand side of equation (13) by one unit but also 
raises the right-hand side by p(l-w) < 1 units through its direct and 
indirect effects on pt-pt-l-nt-l. A unit decrease in it not only lowers 
the left-hand side of (13) by one unit but also lowers the right-hand side 
by paa < 1 units through its indirect effect on pt.-pt-l-rt-l. Therefore, 
a decrease in rt-l leads to a smaller decrease in rt if and only if 
l-w > CYU. It can be shown that a decrease in 7rt-l causes a smaller 
decrease in pt-pt-1 if and only if l-w > QU. 

More formally, we reduce the model to a difference equation in n as 
we did in Section II: 

nt = 
1 - p(l-w) 

1 - pao %-1 - 
Pa ; 

1 - paa . (14) 

If w is small enough that l-w > au, the root of equation (14) will be less 
than one, and the system will be stable. Chart 7 plots the response of 
the model to the same interest rate shock used in Chart 1. The parameter 
values are the same as those in Chart 1, with the addition of w = 0.1. 
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Chart 7 
Theoretical Model with Nonvertical Phillips Curve 
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Now we modify the basic model to allow for a wealth effect in the 
goods market equation. In order to focus on the implications of the 
wealth effect separately from the nonvertical Phillips curve, we return to 
the vertical Phillips curve of the alternative version of the basic model. 
The modified model is 

Y, = -u<r - q + uwt - P,), (15) 

Pt - P,-1 = "Y, +n 
t-l' 

? - %-1 = P(P, - P,-1 - nt-l)* 

(16) 

mt - P, = VY, - XT, (18) 

W 
t 

= (1 + ;)Wtwl - rMtl - rPtYt. (19) 

There are some new variables that must be defined. W, and wt are the 
level and the logarithm of nominal wealth. M, and mt are the level and 
logarithm of nominal money balances. It is assumed that nominal wealth is 
the sum of nominal money balances and nominal government bonds which are 
not assigned a symbol. P, is the price level. The demand for output has 
been modified by adding a wealth effect. There are also some new 
equations. Equation (18) is the money demand function. The demand for 
real balances varies directly with output and inversely with the nominal 
interest rate. When the nominal interest rate is pegged, the nominal 
money supply is endogenous. Equation (19) is the government budget 
constraint written as a wealth evolution equation. It states that this 
period's nominal wealth (nominal money balances plus nominal government 
bonds) is equal to one plus the nominal interest rate times last period's 
nominal wealth minus the nominal interest rate times nominal money 
balances (on which no interest is paid) minus tax revenues. Government 
spending is assumed to be zero for simplicity. The evolution of wealth in 
our model is similar to the evolution of wealth in the EPA model. In the 
EPA model, nominal wealth is obtained by cumulating nominal household 
savings using the short-term nominal interest rate. 

An increase in a nominal interest rate peg has additional effects in 
the wealth-effect model. An increase in the peg in period t raises period 
t real wealth in two ways through its negative effects on period t output 
and inflation. First, it lowers real tases. Second, it raises the real 
value of beginning of period wealth by lowering prices. An increase in 
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the peg in period t also raises period t+l real wealth in two ways. 
First, it raises period t+l real interest payments directly. Second, by 
lowering period t output, it raises the period t demand for real bonds at 
the expense of the demand for real money balances, thereby raising period 
t+l interest payments indirectly. The increases in period t and period 
t+l real wealth tend to offset the effect of the rise in the peg on output 
and inflation. 

Because of the combination of levels and logarithms in equations (15) 
through (19), it is not possible to obtain an analytic solution. Rather 
than studying the model's local stability properties using a log- 
linearization of the government budget constraint, we trace out the 
implications of some specific parameter values using numerical 
simulations. When B is quite small, the qualitative behavior of the 
wealth-effect model is the same as that of the basic model. That is, 
increasing an interest rate peg leads to a deflationary spiral. However, 
when 0 is somewhat larger, the qualitative behavior of the wealth-effect 
model is quite different. 

Chart 8 shows the paths of the price level and the inflation rate 
following an increase in a nominal interest rate peg in the wealth-effect 
model. The parameter values used to generate Chart 8 are the same as 
those used to generate Chart 1, with the addition of B = 0.1, q = 1, and 
x = 4. As is apparent, w;t;l t:lis set of parameters the theoretical model 
generates the prediction that the price level will drop, fall farther, and 
then rise continuously and that the inflation rate will drop and then 
rise. What is not apparent from Chart 8 is that the inflation rate 
asymptotically approaches a new steady state value that is higher than the 
old by an amount not quite equal to the increase in the nominal interest 
rate peg. Indeed we found that the wealth-effect model is stable for a 
wide range of parameters. 

A comparison of Chart 8 with Chart 4 reveals that the EPA results are 
consistent with the wealth-effect model. As Chart 2 demonstrates, the MPS 
model is not stable under interest rate pegging despite the inclusion of a 
wealth effect. As noted above, it is possible for a model with a small 
enough wealth effect to be unstable. However, the MPS model is unstable 
for a different reason. I/ Its measure of wealth includes equities and 
land. There is a direct effect of changes in the interest rate on the 
prices of these assets. A higher interest rate causes the nominal value 
of equities and land to fall by enough that real wealth falls even though 
the price level falls. 

1/ This conclusion is based on an analysis of the behavior of real 
wealth in the MPS model by Flint Brayton. 
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Chart 8 
Theoretical Model with Wealth Effect 
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V. Nominal 

Nest, we consider the implications of nominal interest rate pegging 
in models with rational expectations. We use a model adapted from Taylor 
(1930): 

Y, = - O[F t - (tPt+l - Pt>l, (20) 

l( Xt = 2 “t-1 + &+I) + -dY, + tYt+l) 3 

l( P, = T xt-1 + xt>. 

(21) 

(22) 

A subscript t before a variable denotes the expectation of that variable 
conditional on period t information. The pegged interest rate, ?,, is 
dated because both past and expected future interest rates enter into the 
solution. Equation (20) is the goods market equilibrium condition. It is 
identical to the goods market equilibrium condition used above except that 
it embodies the assumption that inflation expectations are formed 
rationally, not adaptively. Equation (21) tells how firms and workers 
making contracts in period t set the contract nominal wage xt. Firms and 
workers enter into nominal wage contracts that last for two periods. They 
agree on a contract nominal wage that is the same in both periods. It is 
assumed that exactly half of all workers enter into new two-period 
contracts in each period, so wage contracts overlap. It is also assumed 
that the excess demand for labor in period t is proportional to the 
deviation of output in period t from its natural rate of zero. If the sum 
of the excess demand for labor in period t and expected excess demand in 
period t+l is zero (yt + tyt+l = 0), firms and workers making contracts 
at time t try to maintain the relative wage of the workers over the life 
of the contract. They set xt equal to the average of the wage being 
received by the workers who entered into contracts in period t-l (xt-1) 
and the wage that they expect will be received by these same workers when 
they enter into new contracts in period t+l (txt+l). If the sum of 
current and expected future excess demand is positive or negative, firms 
and workers making contracts in period t agree to raise or lower the 
relative wage of the workers. Equation (22) describes the determination 
of the price level in period t. It is assumed that each unit of labor 
produces one unit of output and that firms set the price of output equal 
to the wage they pay so that the markup is zero. Therefore, the price 
level in period t is equal to the average of the contract wages negotiated 
in periods t-l and t. 
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Our Taylor model can be expressed as a system of three first-order 
difference equations: 

Xt 

&+I 

tYt+l 

-1 2 0 X t-l 

0 1 l/u % 
+ 

-2/r 2/r - (l+v>/ar Y, 

0 

1 

- l/r 

- 

rt* (23) 

The first equation can be obtained by solving equation (22) for xt. The 
second can be obtained by solving equation (20) for tpt+l. The third can 
be obtained by making use of the first two and equation (21). Shift the 
first equation forward one period, take expectations based on period t 
information, and substitute the resulting expression for txt+l into 
equation (21). Now substitute the expression for tpt+l given by the 
second equation into equation (21) and solve the resulting equation for 
tYt+1- 

In equations (23) the lagged contract wage, xt-1, is a "sticky" 
variable. It is predetermined and, therefore, is not free to move at time 
t. Price and output, pt and yt, are "jump" variables. They are free to 
move at time t. 

The solutions for xt-1, pt, and Yt take the form 

Xt-l = clvllu; + C2V12$ + C3V13Uk + Q,(t), (24) 

Pt = clv21u; + c2v22u; -I- c3v23u; + QpW, (25) 

Yt = clv31u; + c2v32u; + c3v33u; + 
% (t) * (26) 

The Cj are arbitrary constants to be determined by boundary conditions. 
The uj are the roots of the characteristic equation of system (23). The 
vij are the elements of the characteristic vector corresponding to the 
characteristic root u* J' Qx(t>s QpW, and Q,(t) are the particular 
solutions for xt-1, pt, and yt respectively. 

The characteristic equation of the system (23) is 
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u3 + (1 + B)u2 - (1 + 2B)u - (1 - B) = 0, (27) 

B =-$ 

The uj are 

[ 1 l/2 
-(2 + B) + 8B + B2 -(2 + B) - [ 8B + B2 1 10 

ul=l, u2= 
2 ' u3= 2 . (28) 

u2 always lies between -1 and +l. To see this, subtract 8B from the term 
inside the square brackets to obtain an expression exactly equal to -1. 
Since 8B is positive, u2 must be larger than -1. Now, instead of 
subtracting 8B, add 16 to the term inside the square brackets. The 
resulting expression is greater than u2, and it is exactly equal to 1. 
Since B is always positive, it is clear that u3 is always less than -1. 

The elements of the characteristic vectors corresponding to the uj 
are 

1 + u. 
Vlj = 1, v2j ==+, 

a(u. - l)(l + u.) 

v3j = 2 , (29) 

where the vectors have been normalized by setting the vlj equal to unity. 
Note that all the vij except v31 are nonzero. 

Sargent and Wallace (1975) show that with nominal interest rate 
pegging the price level is indeterminate in their model even when 
explosive solutions for the endogenous variables are ruled out. I-/ We 
obtain a closely related result in our Taylor model. 

First we rule out explosive solutions for xt-l, pt, and yt. We 
assume that if Ft is growing, it is growing at a less than exponential 
rate. If a variable is growing at a less than exponential rate, we say 
that it is growing at a nonexplosive rate. Since the exogenous variable 
in our system is growing at nonexplosive rate, it seems reasonable to ru 
out explosive solutions for the endogenous variables. It can be shown 

le 

I/ Explosive solutions are often referred to as speculative bubbles. 
Ruling out explosive solutions is the same thing as making a no- 
speculative-bubbles assumption. 
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that if rt is growing at a nonexplosive rate, it is possible to construct 
nonexplosive particular solutions for xt-1, pt, and yt. I/ Even if the 
particular solutions are nonexplosive, the solutions for xt-1, pt, and yt 
will be explosive unless C3 = 0 because 1~31 > 1. We assume that C3 = 0. 

Next we show that there are a multiplicity of nonexplosive solutions 
for xt-1, pt, and yt. Given that ~31 = C3 = 0, the solutions for the 
endogenous variables at time zero take the form 

x-l = Clvll + C2v12 + Q,(O), 

PO = 5’~~~ + C2v22 + Q,(O), 

YO = C2v32 + Q,(O). 

(30) 

(31) 

(32) 

The vij and Qx(O>, Q,(O), and Q Y (0) are known functions of the parameters 
and the exogenous variable. s-1 is known at time zero. However, PO, ~0, 
Cl* and C2 are unknown. Since there are three equations but four 
unknowns, there is a multiplicity of solutions for p0, y0, Cl, and C2. 
Since there is a multiol-city or solutions for Cl and C2, there is a 
multiplicity of nonexplosive solutions for xt-1, pt, and yt. 

The existence of a multiplicity of nonexplosive solutions for the 
endogenous variables with nominal interest rate pegging does not imply 
that all paths are feasible. Each value of C2 implies unique values for 
PO> YO* and Cl and, therefore, unique paths for xt-1, pt, and yt. 

In his discussion of multiple solutions McCallum (1986) distinguishes 
between "indeterminacy" and "nonuniqueness." For McCallum a model 
exhibits "indeterminacy" if it has the type of multiple solution in which 
real variables are uniquely determined and nominal variables are 
underdetermined, and a model exhibits "nonuniqueness" if it has any other 
type of multiple solution. In the models of Sargent and Wallace (1975), 
Canzoneri, Henderson, and Rogoff (1983), and McCallum (1986) with nominal 
interest rate pegging the behavior of the real variables is the same along 
every nonexplosive path for the economy. While the path of the price 
level is indeterminate, each given price path is consistent with only one 
path of the money supply. Sargent-Wallace-type models with nominal 
interest rate pegging exhibit what McCallum calls indeterminacy because 
- 

1/ For a description of how to obtain particular solutions see 
Blanchard and Kahn (1980). 
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real variables depend on nominal variables only through deviations between 
the actual and expected values of these variables. Our Taylor model with 
nominal interest rate pegging does not exhibit what McCallum calls 
indeterminacy despite the fact that it embodies the assumption of rational 
expectations. Different feasible price paths are always associated with 
different paths of output. This result arises because in the Taylor model 
the current values of real variables depend on lagged values of nominal 
variables. 

Although McCallum's distinction may be useful in some contexts, to us 
the more natural distinction is between multiple solutions that are 
explosive and those that are not explosive. Sargent and Wallace (1975), 
Taylor (1977), and Blanchard and Kahn (1980) all have used the 
nonexplosiveness condition to rule out some rational expectations 
solutions. We believe that it is useful to say that a model exhibits 
indeterminacy if it has a multiplicity of nonexplosive solutions whether 
or not real variables are uniquely determined. Of course, our Taylor 
model does exhibit what we call indeterminacy. 

VI. Nominal Interest Rate Pegging as the Limit of Nominal 
Interest Rate Smoothing Under Rational Expectations 

In previous sections we have assumed that the authorities peg the 
nominal interest rate by simply standing ready to exchange securities for 
money at the chosen rate. According to Canzoneri, Henderson, and Rogoff 
(1983), Dotsey and King (1983), and McCallum (1986), when the authorities 
peg the nominal interest rate in this way, they are pursuing an 
incompletely specified policy. In this final section we introduce money 
supply rules from a class with interest rate smoothing into our Taylor 
model and trace out the implications of viewing nominal interest rate 
pegging as the limit of nominal interest rate smoothing. 

The modified version of our Taylor model is given by 

Y, - - 4rt - (tPt+l - Pt>ll 

) + r(y, + tYt+l 

(33) 

Xt = $Xtwl + tXt+l 

Pt - ;(xtm1 + x,>, 

1, (34) 

(35) 

(36) mt - P, - VY, - Art, 
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mt 
= m. + pt + p(r, - rt). (37) 

Equations (33) through (35) can be obtained by rewriting equations (20) 
through (22), replacing rt with rt. Equation (36) is the same standard 
formulation of the money demand function that appeared as equation (18) in 
our wealth-effects model in Section IV. Equation (37) is a representative 
of a class of money supply rules with nominal interest rate smoothing. If 
the market nominal interest rate, rt, equals the target nominal interest 
rate, rt, then (the logarithm of) the money supply follows a linear 
trend. lJ When rt exceeds r,, the money supply increases by a fixed 
proportion, p, of the gap. We call the parameter m0 the initial money 
supply, the parameter p the trend growth rate of the money supply, and the 
parameter j3 the interest rate smoothing parameter. 2/ 

As before, the model can be expressed as a series of three first- 
order difference equations: 

Xt 

tPt+l = 

tyt+1, 

-1 

0 

-2/r 

2 0 

11 + v(B+x>l [l/u + tl/(B+X>l I 

[2 - l/(B+x>l/r L-7 - l/u - rl/(B+X)l/r 
I 

Xt-l 

Pt 

Yt 

(38) 

I/ Of course, since the logarithm of the money supply grows 
arithmetically, the money supply itself grows exponentially. 

2/ By inspection of equations (36) and (37) we can see that in a 
steady state with constant y and r, both m and p must grow at rate p. 
Furthermore, if the long-run values of y and r are 0 and r, respectively, 
then equation (33) requires that /.J = I;. This relationship was imposed in 
the subsequent simulations, but it is not necessary for a solution to 
equations (38). If /J # r, r will gradually approach p. 



. 
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0 0 0 

-l/(P+X> -p/(B+X> B/(B+x) 

l/r(P+A> /J/r(B+A) -P/r(P+A) 

1 mO 

t 

- 
rt 

In order to obtain these equations, first substitute the right-hand side 
of equation (37) for mt in equation (36). Next solve the modified version 
of equation (36) for rt and substitute the resulting espression for rt 
into equation (33). Then follow the steps described in the last section 
using the modified version of equation (33) and equations (34) and (35). 
As before, xt-1 is a sticky variable, and pt and yt are jump variables. 

The form of the solutions for xt-1, pt, and yt for the model of 
system (38) is given by equations (24), (25), and (26). Of course, the 
characteristic roots, characteristic vectors, and particular solutions for 
the model of equations (38) will be different from those for the model of 
equations (23). 

The characteristic equation of the system (38) is a cubic, and we 
have been unable to obtain analytical expressions for the roots. However, 
in Appendix B we show that this equation has three distinct real roots, 
one inside the unit circle and two outside the unit circle. Let ul 
represent the root inside the unit circle, and let u2 and u3 represent the 
roots outside the unit circle. 

As before, we begin by ruling out explosive solutions for xt-1, pt, 
and yt. Consider the esogenous variables of the system of equations (38). 
m0 is a constant. t is growing at a nonexplosive rate. We assume that if 
rt is growing, it is growing at a nonexplosive rate. Since the esogenous 
variables in our system are growing at nonexplosive rates, it seems 
reasonable to rule out explosive solutions for the endogenous variables. 
It can be shown that if the exogenous variables are growing at 
nonexplosive rates, it is possible to construct nonexplosive particular 
solutions for St-l, pt, and yt. Even if the particular solutions are 
nonexplosive, the solutions for xt-1, pt, and yt will be explosive unless 
C2 = C3 = 0 because 11~21, 1~31 > 1. We assume that C2 = C3 = 0. 

Next we show that there is a unique nonexplosive solution for xt-1, 

Pt, and yt. Given that C2 = C3 = 0, the solutions for the endogenous 
variables at time zero take the form 

x-1 = Clvll + Q,(O), (39) 
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PO = C1v21 + Q,(O), (40) 

YO = C1v31 + Q,(O). (41) 

. 

l 

The vij and Qx(O), Q,(O), and Q,,(O) are known functions of the parameters 
and the exogenous variables. x-1 is known at time zero. However, PO, ~0, 
and Cl are unknown. Since there are three equations and three unknowns, 
there is a unique solution for p0, y0, and Cl. Since there is a unique 
solution for Cl, there is a unique nonexplosive solution for xt-1, pt, 
and yt . 1/ 

We wanted to learn more about the properties of system (38). For 
example, we wanted to know whether increasing the value of fi reduces the 
gap between the market interest rate and the interest rate target at every 
point in time after an increase in the interest rate target. Since we 
have been unable to obtain analytical expressions for the roots of the 
characteristic equation, we performed some numerical simulations of the 
system using the Fair-Taylor extended path algorithm. L?/ The results of 
these simulations are shown in Charts 9 through 12. The parameter values 
used in the simulations are -y = 0.2, u = 1, r~ = 1, and X = 4. These 
values are in the range of long-run elasticities in Taylor's multicountry 
model. 

Chart 9 shows the paths of the price level, inflation rate, and 
interest rate in response to simultaneous, one-time increases of 0.01 in 
the target interest rate, i!, and the trend rate of money growth, p. J/ 
The interest rate converges quickly to its new target value even in the 

I/ Reinhart (1988) studies an alternative money supply rule with 
nominal interest rate smoothing using a continuous-time model with 
staggered contracts of the type suggested by Calvo (1983). We have 
analyzed a continuous-time version of our proposed money supply rule using 
Reinhart's model and find that the price level remains determinate as the 
smoothing parameter approaches infinity. 

2/ We used the Fair-Taylor extended path algorithm because it was 
convenient to do so. Since our Taylor model is linear, we could have used 
the solution formulae in Blanchard and Kahn (1980). 

3/ The impact period was normalized at t=O, so that the shocked money 
supply equals the baseline money supply in the impact period in the 
absence of interest rate smoothing (/J=O). 
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Chart 9 
Rational Expectations, Staggered Contract Model 
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Chart IO 
R.E. Model with Delay in Money Growth 

Price 

B=20 

---8~200 

-- 

0.080 

0.040 

G 

0.040 

Inflation Rate 
- - 

- 

0.030 

0.020 

0.010 

0' 

0.010 

0.020 

Interest rate 
- - 0.020 

0.015 

0.010 

0.005 

0 
1987 1988 1989 1990 1991 1992 





- 2oc - 

Chart 11 
R.E. Model with Initial Money Supply Contraction 

B=20 
--B=200 

Price 
- 0.080 

l I I I I I I 1 l l l 0.040 

Inflation Rate 
- 0.030 

- 0.020 

0.010 

0' 

// 
\/ - 0.010 

I I I I I I l I I I l 0.020 

Interest rate 

I I I I I I l I l I 
1987 1988 1989 1990 1991 1992 

0.020 

0.015 

0.010 

0.005 

0 





- 20d - 

Chart 12 
R.E. Model with Temporary Interest Rate Increase 
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absence of any interest smoothing (p=O). However, a higher value of /3 
does indeed keep the interest rate closer to its new target value 
immediately after the shock. L/ Note that the inflation rate jumps above 
its long-run value on impact. It makes sense that inflation should 
exceed the money growth rate for a while because real balances must be 
lower in the new steady state with a higher nominal interest rate. output 
also rises on impact because of the drop in the expected real interest 
rate. 

We were intrigued by the expansionary effect of a simultaneous 
increase in the nominal interest rate target and the trend money growth 
rate. Therefore, we conducted three experiments to determine whether an 
increase in the nominal interest rate target would always have an 
expansionary effect in the Taylor model with our class of money rules. In 
each experiment the increase in the interest rate target was implemented 
using a different money supply rule in our class. In the first 
experiment, we raised the interest rate target but held the trend money 
growth rate at its previous value for 8 quarters before raising it to the 
level of the new interest rate target. In the second, we raised the 
trend money growth rate simultaneously with the interest rate target but 
dropped the initial money supply by an amount equal to 8 quarters' growth 
at the new rate. In the third, we raised the interest rate target for 8 
quarters and lowered it back to its initial value thereafter. In this 
experiment we did not change the trend money growth rate. 

The results of these experiments are plotted in Charts 10 through 12. 
In every case, the higher interest rate target is deflationary in the 
initial periods. As the charts show, a much higher value of the interest 
smoothing parameter was necessary to keep the market interest rate within 
5 percent of its target. 

Our analysis of a Taylor model with money supply rules from a class 
with nominal interest rate smoothing yields two main conclusions. First, 
for each member of the class, nominal and real variables remain 
determinate as the interest rate smoothing parameter increases without 
limit. That is, nominal interest rate pegging viewed as the limit of 
nominal interest rate smoothing is consistent with price level 
determinacy. Second, different members of the class are consistent with 

1/ The larger the value of p, the longer the forecast horizon and, 
therefore, the more computation time needed to achieve convergence of the 
extended path algorithm. This fact is not important if the model being 
analyzed is linear because the solution formulae in Blanchard and Kahn 
(1980) can be used instead of the extended path algorithm. However, it 
might be quite important if the model being analyzed is nonlinear because 
the extended path algorithm must be employed. 
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hitting the same nominal interest rate target but imply different paths 
for other nominal and real variables. That is, the values of the contract 
wage, the price level, and output depend not only on the nominal interest 
rate target but also on the other parameters of the money supply rule. 
The second conclusion confirms the main result of the previous section: 
the same nominal interest rate is consistent with a multiplicity of 
nonexplosive paths for the contract wage, the price level, and output. 
The second conclusion also has an important implication for the design of 
simulation experiments that call for nominal interest rate pegging in 
rational expectations models. The designers need to specify all the 
parameters of the money supply rule, not just the path of the target 
nominal interest rate. 
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This appendix demonstrates that a two-country version of the basic 
model is dynamically unstable. The model is given by the following 
equations: 

Y, = - O(F - xt> + 6(et + p*, - P,), 

* 
;, = - o<r - it’ - 6(et+Et - P,), 

Pt+l - P, = a’y, + rt, 

p* t+l 
- p*, = atGt + Zt, 

(44) 

(45) 

Tt+l - rt = P(Pt+l - P, - Tt)) (46) 

* * * 
At+l - =t = P&t+l - p*, - nt> I 

Et 
+Z -A =-d(e 

t t t + 6 - P,), 

(47) 

(48) 

* - - 

Ct 
=r-r. (49) 

Variables with asterisks are fgreign-country variables. y and $ are (the 
logarithms of) outputs, Er and Y are nominal interest rates, n and 2 are 
expected rates of inflation, p and 6 are (the logarithms of) the home 
currency price of home output and the foreign currency price of foreign 
output, e is (the logarithm of) the exchange rate defined as the home 
currency price of foreign currency, and E is the expected rate of 
depreciation of the home currency. It is assumed that (the logarithms of) 
the natural rates of output are zero. The bars over the nominal interest 
rates indicate that they are being pegged. For simplicity it is assumed 
that the parameters for the two countries are the same. 

According to equations (42) and (43), outputs in the two countries 
are equal to demands for those outputs. Demands depend negatively on 
expected real interest rates. Demand for the home good depends positively 
on the relative price of the foreign good or real exchange rate, and 
demand for the foreign good depends negatively on this variable. 
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According to equations (44) and (45), in each country the inflation rate 
depends positively on the gap between actual and natural output and on the 
expected rate of inflation. According to equations (46) and (47), 
expectations about inflation are formed adaptively; in each country the 
expected rate of inflation is increased by a fraction of the gap between 
actual inflation and expected inflation. According to equation (48), 
expectations about the rate of depreciation of the home currency in real 
terms are formed regressively; if the real exchange rate is above its 
long-run equilibrium value of zero, the expected rate of depreciation is 
negative. The combination of the assumption that expectations about 
inflation are formed adaptively and the assumption that expectations about 
the rate of real depreciation are formed regressively may seem somewhat 
anomalous. However, these assumptions are combined in at least one of the 
econometric models. According to equation (49), assets denominated in 
home and foreign currency are perfect substitutes; the expected rate of 
depreciation of the home currency must equal the interest differential in 
favor of the home currency. 

Substituting (49) into (48), using the resulting equation to 
eliminate the real exchange rate from (42) and (43), and substituting the 
modified versions of (42) and (43) into (44) and (45) yields a pair of 
first-order difference equations in ?r and %: 

7 

?+l 
l+D+E -E 

= 

* 

,?rt+l 
-E l+D+E 

A - 

D = pa'o, E= 

Y 

* 

=t 

+ 

pa’6 

4 . 

- (D + E) E 

E - (D + E) 

(50) 

From inspection of equations (50) it is clear that when 6=0, the equations 
are independent and identical to equation (46) in the text. The 
characteristic roots of the system (50) are l+D and l+D+E. Both roots lie 
outside the unit circle for all positive values of the parameters. 
Therefore, the system is unstable. 
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0 In this appendix we use Sturm's method to prove that the 
characteristic polynomial of the Taylor model with a money supply rule 
that incorporates nominal interest rate smoothing has three distinct real 
roots, one inside the unit circle and two outside the unit circle. The 
characteristic polynomial is 

u3 + (1 + F - G)u2 - (1 + 2F + 2G)u - (1 - F + G), (51) 

1 ‘I F=$+ -- [ 1 1 

A+ B -Y' 
G=- 

x + /3' 

Sturm's method is a way of determining the number of distinct real 
roots of a polynomial that lie between any two real numbers. I/ In order 
to apply Sturm's method it is necessary to construct the Sturm functions 
fO(u) through fn(u), where n is the order of the polynomial. Q)(u) is 
simply the polynomial itself. fl(u) is the first derivative of fO(u). To 
obtain fi(u), i I 2, divide fi-l(u) into fi-2(U) using polynomial long 
division; fi(u) is defined to be the remainder multiplied by -1. 

The Sturm functions for the polynomial (51) are 

fo(U) = u3 + (1 + F - G)u2 - (1 + 2F + 2G)u - (1 

fl(u) = 3u2 + 2(1 + F - G)u - (1 + 2F + 2G), 

f2(u) = $[8 + 16F + 8G + 2(F - G)2]u + (8 - 2F2 + 2G2 

f3(u) = F[F2 + 8F + 4FG + 10F2G + 6FG2 + FG(F 

H = [2(1 + F - G)2 + 6(1 + 2F + 2G)12. 

- F + G), (52) 

(53) 

12F + 8G)), (54) 

021 9 (55) 

1/ For a discussion of Sturm's method see Baumol (1959). 
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u = -co 

Table 1 0 

u = -1 u = +l u=+co 

fo(u) + + 

flW + ? + 

f2 (u> ? ? + 

f3 (u> + + + + 

V(u) 3 2 1 0 

The number of distinct real roots between Uj and uk, where Uj < uk 
can be determined in three steps. First, evaluate fi(u), i = O,...,n, 
for Uj and uk. Second, determine V(u), the number of times fi(u) changes 
sign as i runs from 0 to n, for u. Third, subtract V(uk) from 
V(Uj >. 

, and uk. 

The signs of the fi(u) and the values of V(u) for the polynomial (1) 
for u equal to -a, -1, +l, and +oo are shown in Table 1. V(-1) = 2 
independently of the sign of f2(-1). fl(1) and f2(1) are 

fl(l) = 4(1 - G), (56) 

f2(1) = 16 + 4G2 + 8G + 4F(l - G). (57) 

If 1-G is positive, then both fl(1) and f2(1) are positive, so V(1) = 1. 
If 1-G is negative, then fl(1) is negative and f2(1) may be either 
positive or negative, but in either case V(1) = 1. 

The polynomial (1) has three distinct real roots since 
V(-m) - V(a) = 3. One of these roots lies inside the unit circle since 
V(-1) - V(1) = 1. Therefore, the other two roots must lie outside the 
unit circle. 
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