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Summary

This paper analyzes the behavior of the exchange rate within
a hand model of exchange rate determination when fundamentals are
driven by Rrownian motion and multiple point processes, It derives
closed form expressions for the exchange rate as a function of fun-
damentals under two different assumptions about the intervention
policy followed by the government,

The inclusion of discontinous components in the driving process
is important, first, because it allows one to relax very considerably
the stringent restrictions placed by existing models upon exchange
rate distributions, This relaxation is likely to prove very useful
in empirical work. Second, an important difference between the
models developed in this paper and those based on continuous funda-
mentals is that the authorities will need to intervene periodically
on a large scale to prevent realignments.







I. Introduction

The growing literature on band models of exchange rate determination! has relied
almost exclusively on continuous processes to drive the fundamentals. The only exceptions
are papers by Svensson {1989) and (1990) in which a Poisson mmp(monr is used to model

periodic realignments in exchange rate bauds. Although the prescuce of devaluation risk
introduces an extra premium into the relationship between fundamentals and exchange

rates, it does not significantly change the analysis thanks to Svensson’s assumptions, first,
that the Poisson process generating the shocks is independent of thie Brownian motion
term in the fundamentals. and. second, that the band for fundamentals jumps up by
exiactly the same amount as the fundamentals themselves.

In this paper, we investigate the implications of introducing jump components into
the fundamentals while assuming that the band itself is fully credible. Assuming mixed
Brownian motion-Poisson process fundamentals, we examine two forms of intervention by
the monetary authorities. Under the first, the authorities ‘truncate’ jumps that would
otherwise take fundamentals outside their prescribed band. Under the second, the
authorities ‘reflect’ the discrete jumps in fundamentals back into the band interior. As we
argue iu Section 4 of the paper, the form of the relation between exchange rates and
fundamentals is determined by the ‘instantaneous uncertainty’ in the driving process. If
the rate of jump of a point process is bounded and right continuous, then even if it evolves
stochastically over time, this will not contribute to the instantaneous uncertainty
associated with the fundamentals. This fact enables us to generalize our basic results for
Poisson processes to a very wide class of point processes.

The importance of the results in this paper is two-fold. First, existing models of
exchange rate bands place stringent restrictions upon the distributions of discrete time
increments in exchange rates. While empirical work in this area is just begining, it is
likely that these distributional restrictions will rapidly prove a handicap in the
development of models that have a reasonable chance of fitting the data. Statistical
studies of financial return distributions in other areas have conmstently shown that simple
normal distributions fit return data quite poorly.? Sectiou 6 of this paper reports the
results of estimating a mixed Brownian-Poisson process using weekly data on the
sterling-dentschemark exchange rate between 1980 and 1990. Likelihood ratio tests
strongly reject the restriction of this model to a purely Brownian motion forcing process.
A second contribution of this paper is that it shows how the authorities may be obliged to
employ reserves in non-negligible amounts to defend the intervention parities. If news

!See, for example, Krugman (1987), Krugman and Rotemberg (1990), Froot and Obstfeld (1990).

2See, for example, the classic studies of stock return distributions by Fama (1965) and Mandelbrot (1963).
More receut work by Akgiray and Booth (1988) on freely floating exchange rates, Marsh and Rosenfeld (1983)
on bond prices and Jarrow and Rosenfeld (1981), Ball and Torous {1985) and Ho. Perraudin and Sorensen
{ 1489) on stock returns suggest that mixed Brownian-Poisson processes provide a better statistical model of
financial returns than does Brownian motion with drift.



affecting fundamentals is ‘lumpy’ or discontinuous then the authorities may have to carry
out large-scale interventions if the band is to be maintained.

The empirical results reported in the last Section of this paper suggest interesting
results concerning the tradeoff between exchange rate and fundamentals with and without
jump processes. From an estimation of the free float sterling-deutschemark exchange rate,
it is possible to identify all but one of the parameters of the relationship that would hold
between exchange rate and fundamentals in the presence of a credible band. A reasonable
value for the remaining free parameter may be chosen on the basis of past empirical work
on money demand. Solving the systems of equations characterizing the exchange rate as a
function of fundamentals, I show that, at least for this parametrization, the inclusion of
jump components improves the tradeoff since the authorities’ commitment to offset jumps
that would push fundamentals outside their prescribed band serves to stabilize the
exchange rate even well into the interior of the target zone

II. The Free Float Model

The basic equation of exchange rate determination may be written as:

d .
e = ki + a—FEe 1
t t dt t ( )
where e; and k; are the log exchange rate and the fundamentals respectively at time t,
where a is a constant, and where the expression % Ee; denotes the quantity
limg_,o4 E, 241 Now, suppose that fundamentals are the solution to the following
stochastic differential equation:

o

dky, = podt + 5,dW; + BodNy + 33dNy, (

Here.the §3; ¢ = 0,1,.,3 are fixed constants, {W;}2, is a standardized Brownian motion
and suppose initially that the {N;}%, ¢ = 1,2 are Poisson processes with rates of jump
A 1 = 1,2. We shall discuss in a later section what are the implications if the

"This equation may be derived from a simple monetary model of exchange rate determination. Suppose
that the logarithms of money demand in the domestic economy and the rest of the world are equal to:
me = pe+ Nyt + y2te — ve and m; = p, + Ny + Y21 — vy, where p, and y; are the logs of the price
level and output in the domestic country, 1; is the nominal interest rate and v, represents velocity. Also,
vi 1 = 1,2 are fixed parameters, and * denotes the corresponding variable for the rest of the world. Suppose
that Purchasing Power Parity (P.P.P.) holds, i.e. p. = €, + p;. Uncovered interest rate parity implies that
T — 1 = %Ee,. Substituting in this last expression for the interest rate differential and using the P.P.P
condition, one may derive equation 1 in the text where the ‘fundamentals’ k; are defined as: k; = v1(y; —y¢)+
my — m{+ v, — vy, and where a = —7,.



{Nit}o 1 = 1,2 are more general point processes. By a gencralized version of Ito’s lemma
(see Elliott (1982) Theorem 12.19):

de, = dG(k) = poG'(k)dt + B1G'(k)dW, + %iG"(k,_)(lt + (3)

alG(ki + PB2) — G(k) JdNy + o[ G(ky+ 83) — G(k¢) ANy

Taking expectations and substituting in equation (1) yields:

ol 51

G(ke) = ke + aBoG' (k) + QT)—G”(ICL) + ol Gk +82) =G (k) A1 + o Gk +53) -G (k) 1Az
(4)

The difference between this equation and the corresponding result without jump
components is the presence of the difference terms on the right hand side. In many
stochastic process applications, the difference terms that result from the inclusion of jump
components mean that only numerical solutions are possible.! In this case, however, the
fact that the solution for the continuous case includes just linear and exponential terms
means that a simple analytical solution is possible. To see this, guess the solution:

G(k) = Aok + Ar + Agexp(&iky) + Agexp(&zky) (5)

Taking derivatives of G(.) and substituting in equation (4) vields a linear expression
involving constants and terms in k. and exp(&k) ¢ = 1,2. Equating coefficients leads to
the system:

Ao = 1 (G)
At = adAo(Bo + BaA + B3Ag) (7)
1 o 32
Az (;‘F/\J +/\2) = A ()\163\'13(51/32)+/\29XP(51,133J+/30€1 +%ff) (8)

\
to] <
—

1 .
A (; + 4 AQ) - 4 (Al exp(€232) + Aw exp(E233) + Bobs +

These equations determine the parameters Ag, A;, & and &. If one takes the solution that
implies no bubbles for the free float exchange rate, one has Ag at unity, 4; equaling the
total drift in the process including the mean increase in fundamentals due to the jumps,
and 4, = A3 = 0. Thus, the logarithm of the free float exchange rate itself is equal to:

"For example, solving the Fokker-Plank equation for the conditional density of a process is often more
difficnlt when the underlying forcing process has jump components.



er = Kk + o Bg + P2 + /33/\2) (10)

The only difference between this expression and the standard formula for the free float
exchange rate with Brownian motion fundamentals is the intercept term which here
includes not just the drift parameter, J3y, but also the per period rates of jump weighted
by their respective jump sizes. Together, the bracketed terms on the right hand side
comprise the total conditionally expected growth in the fundamentals per unit of time.
One might note that this free float solution corresponds to the free float solution obtained
periodic realignments of the exchange rate. Svensson assumes that both fundamentals and
intervention levels jump up or down at the same instant. By contrast, in our model,
jumps represent shifts in the position of fundamentals relative to the intervention levels.
Not surprisingly, in the free float case without bubbles, the two approaches are identical.
As we show in the next section, however, when bands are present the solutions obtained
differ substantially.

III. The Case with Band Intervention

Now, suppose that the authorities intervene to defend upper and lower levels for
fundamentals denoted by k and k. The question immediately poses itself: how do the
authorities react to jumps in the fundamentals that without intervention would take them
outside the range [k, k|? Various approaches are possible. In the next section, we shall
consider the case in which fundamentals are ‘reflected back’ into the interior of the band
by the authorities’ actions. From an analytical point of view, that approach turns out to
have important advantages. In this section, however, we concentrate on the case in which
the authorities ‘truncate’ the jumps. In other words, when fundamentals are less than /3,
in distance from % then, in the event of a jump in Ny,, the authorities intervene so that
the jump size after intervention is k — 3,. The authorities perform a similar truncation of
downward jumps near the k barrier. In this case, the fundamentals process after the
discrete interventions associated with fundamental jumps may be described as follows:

Case H : dk, Bodt + B1dW, + (k — ky_)dN1¢ + BsdNay L ko € [k — B2 k] (11)
Case M : dkl. /30(“ + }31(”"1'71 + /32(147\,“ + /33([1V2, ) ki_. € [E - /33.% - ,’32] (12)
CaseL: dk, = PBodt+ 31dW, + B2dNy, + (k — ke_)dNoy |, ke € [k, k- F3] (13)

I

where the superscripts h, m and 1 indicate high, middle and low ranges within the normal
band [k, k]. Note that we assume here that 3; > 0, 33 < 0 and that 3y — 83 > k — k. Tt is
straightforward to alter the analysis to treat the case in which both Poisson processes



jump up. For example, if 3; > 0¢ = 1,2 and, without loss of generality, 3; > /3, then
there are again three ranges but this time given by [k, k — 3], [k — 51,k — B2, and

[k — 32, k]. A system resembling that of the free float solution, i.e. equations (6)-(9), holds
in the low range. In the middle range, jumps in Ny, are truncated at the edge of the band,
k, while in the upper range, jumps in either Ny, or Ny, are truncated. Introducing
additional jump processes, {N;}52, ¢ = 3,4, .., ] with positive or negative coefficients,

B3i ¢ = 3,4, .., I, simply results in I — 2 additional ranges, each with its own system of
equations. Returning to the case with a single positive and a single negative jump, one
obtains the following three systems. For Case H, we have:

AR = 1 - ax Al (14)
1h h 1h7. h 4h eh7. 1h . h7. ’ 4
AT = al Agho + AghAr + AgAz + Ajexp({lhk)A + Agexp(§3k)Ar)  (15)
1 32 .
A= = A (—/\1 — A+ Azexp(£fB3) + Bol + /71(6{‘)2) (16)
U S VA VT PN pr sk o Bone -
Az— = A3 | -\ 2 + Azexp(€303) + Bo&y + —(&2) (17)

For case M, the solution is of the same form as the system of free float equations (6}-(9),
(i.e. in (6)-(9) one may replace Ag, A;, & and & by AZ, AT, &* and £7*). For Case L,
the solution is:

AL = 1 - addl (18)

AL = al AbBo + AbEN: + ALBM + Abexp(Elk)A2 + Alexp(&k)A2)  (19)

1 . 2 )
Ay~ = A (—/\1 e+ Mexpleld) + Aol + DL(el )2> (20)
Asa = Aj A — A+ Arexp(&y82) + Boéy + 5 (&2) (21)

The 3 systems of equatjons corresponding to the three ranges determine the parameters
A}, A, &, and & for j = h,m,l. However, this still leaves us with six undetermined
parameters, namely A%, A} for 7 = h,m,l. To see how these parameters are tied down,
consider first the behavior of the system in range H.

Suppose that fundamentals follow the process given by equation (11) over the whole
domain. This is a somewhat odd ‘fundamentals’ process since it already includes the
authorities’ ‘truncation’ of the jumps in the actual fundamentals. Also, if the process
holds over the whole real line, then the discontinuous part consisting of jumps back to & is
quite unrealistic for any plausible fundamentals. However, what is important in this
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equation (11) in the presence of a reflecting barrier at k, is a special case of solutions to
the same equation in the absense of such a barrier.

Now, equation (1) may be written as:

Suppose that G'(k) > 0, so that locally, it may be represented as in Figure 1, that is as a
(locally) straight line crossing the horizontal at k.

Figure 1: Boundary Crossing

k

It is clear that G(k) cannot be an equilibrium in both the free float (locally linear)
case and in the presence of the band. since in the latter case there is zero probability of
fundamentals rising above k. Equilibrium can only hold if G’(k) = 0. A similar argument
holds for G'(k). We, therefore, have the boundary conditions G'(k) = 0 and G'(k) =

Of the four remaining parameters, two are required to maintain continuity of G(.) at
k— 3 and k — J3, and two are needed to ensure the continuiry of G’(.) at the same two
points. The fact that G' must be continuous at the boundaries between the three ranges



may be seen from Figure 2.

Figure 2: Internal Boundary Crossing

G Gu=(k)
G*(k)

G™(k)

Here, G* is the differentiable and hence locally-linear extension of G™ into the
range above k — ;. Given Jenson’s inequality, it is not possible for G™(k) to be a
particular solution to the exchange rate equation both with and without the shift in the
stochastic regime unless the derivatives G* and G™ are equal at k£ — 3. Otherwise, G
would be kinked at & — 3, which would imply that it would be convex even locally at this
point. A similar argument may be applied to G at k — 3.

IV. Reflected Jumps

An alternative assumption about the authorities’ policy in the event of a jump in
fundamentals is to suppose that, instead of truncating the jump at the edge of the band,
they actually reflect fundamentals back in towards the center. Such a policy resembles to
some degree the discrete interventions investigated by Flood and Garber (1989).

In Flood and Garber, fundamentals are driven by a Brownian motion but when the
exchange rate hits the edge of the target zone, the authorities shift fundamentals so the




exchange rate jumps to some predetermined point within the zone. Here we shall assume
that the authorities’ intervention reflects the fixed size jumps so that if the process is at
some fraction. ¢, of its fixed jump size 3 from the upper boundary. then after the jump
occurs, it will be at a point (1 — ¢)/3, from the edge of the zone.

We adopt this assumption partly because of its analytical tractability, but one may
justify it by the argument that the authorities react differently to jumps that take place
close to the boundary compared with those occuring further away. Thus, the closer
fundamentals are to the edge of the zone, the further they will push them into the interior

of the band.
When the authorities’ intervention policy follows this pattern, the process for
fundamentals after the intervention associated with jumps has taken place, will be of the

form:

Case H Z(”C{ = /3()(” + v{jl(”""r( + (21: - 2’\‘(_ - /33 )dlvll + ,t']_}d.’v'_)_l . kl_ € [E - _/3-3, E]( 23)
Case M :dby, = Bodt + B31dW, + Pod Ny + 33d Ny, , ki € [k — B3,k — 39 (24)
CaseL I(”\?I = ldodt + ,lj]d”vf + ,’32(1.'7\1“_ + (2& — 2]\‘-,_ - ;33)(11\%1 ) ]\71_ € [i\:wl‘: - »’33](23)

it is a straightforward exercise to derive the systems of equations for the parameters A7,
{,{_ for i =0,1,2,3, k= 1,2 and j = h,m,! that this system implies given equation (1),
guessing a solution of the form of equation (5), and then equating coeflicients and using

value matching and smooth pasting conditions.

V. More General Point Processes

This section shows how one can extend the above results to the case in which
fundamentals contain much more general point processes than the Poisson processes
emiployed above. It turns out that the form of the solution in band models of this kind
depends almost entirely upon the continuous part of the driving process. Hence, one may.
for example. introduce antocorrelation and heteroskedasticity into the fundamentals

process by way of a discontinuous component.

It is helpful to adopt a more precise terminology than that employed up to now.
Define a probability space by the triple (£2, F, P). Suppose that fundamentals are driven
as before by a Brownian motion {1¥,}7¢, and two point processes adapted to a filtration
F:. The point processes are defined as sequences of random variables {T;,:=1,2,.} on
(&, F, P) such that T;(w) < Tiy(w) for allw € Q, 1 = 1,2, ... The counting processes
associated with these sequences may be written as: Ny = 3,5, 1T, < 1), 1 =1,2
Assume that these point processes are non-explosive (i.e. they cannot jump an infinite
number of times within a finite period).



Assume that each point process has an F;-progressive stochastic intensity, i.e. a
nonnegative F-progressive process Ay, such that, for all n > 1, N a1, —
fOMT" Ajsds ¢ = 1,2 is a martingale.

Given these definitions, it is easy to repeat the arguments of Section 2. Theorem
12.19 of Elliott again yields an equation of the form of (3). Given that
TG ks + B14:) — G(kg))(dNis — Aisds), i = 1,2 are martingales (see Bremaud (1981),
Theorem T9), and if one assumes that Ay, ¢ = 1,2 are bounded and right continuous, one
may use the Lebesgue averaging and dominated convergence theorems to show (see
Bremaud (1981) page 28) that equation (4) holds as before.

Clearly, if the intensities, A;z = 1,2 just have to be bounded, right continuous
Fi-progressive processes to yield equations of the form of (4), this leaves considerable
flexibility for empirical applications. For example, in a study using daily data, one could
allow A, 1 = 1,2 to be functions, say, of the change in the previous day’s exchange rate.
Alternatively, using longer frequency data, one could think of A;; i = 1,2 as being driven
by other observable processes such as trading volume, real economic indicators or time.

VI. An Application

To investigate further the implications of incorporating jump processes into a band
model, one may solve the systems of equatjons characterizing the solution, given in
Section 3. To make the exercise more interesting, the model was parametrized by
estimating a stochstic differential equation of the form:

df‘t = /30(“ + B]dv‘ft + ﬁ2dN1t + /33(11\/er (26)

where {W;}72, and {N;}2,¢ = 1,2 indicate, as before, a standard Brownian motion and
Poisson processes with constant rates of jump, A;¢ = 1,2. The data used was the
sterling-deutschemark exchange rate at each Wednesday closing from January 1980 to
July 1990.The number of observations was 551.

Assuming that this data is well-described by a free-float model with fundamentals
driven by a Brownian motion and two Poisson processes, one can identify all the
parameters of a credible band model like that of Section 3, with the exception of a. In
other words, one can determine from the behavior of the free float exchange rate, how the
exchange rate would behave if the British authorities introduced a band against the
deutschemark that the markets found credible. The one free parameter, «, may be
thought of as minus the interest elasticity of money demand. Choosing a reasonable value
for « (the literature on money demand functions suggests such a reasonable figure would



be around 9)', and employing equations (6)-(9), (14)-(21) and the smooth pasting and
value matching boundary conditions, one can obtain a function G(.).

The results of the maximum likelihood estimation are given in Table 1. As one may
see, the drift parameter is close to zero so that while its standard errvor is in line with that
of other parameters, the t-statistic is not significant. Most of the mean change in the
series is due to the jump components. While the estimated jump sizes are close to each
other in absolute size the positive jump tends to occur more frequently. The estimated
rates of jump suggest that jumps occur every 2 1/2 to 3 weeks. Finally, the instantaneous
standard deviation parameter on the Brownian motion is large and very significantly

different from zero.?

Table 1 also provides likelihood ratio statistics for the presence of one or two
Poisson components in the free float exchange rate. The restriction of the two jump
process model to a one jump process model is overwhelmingly rejected, as is the
restriction from a one jump to a no jump model.®> These tests show the importance of
generalizing the model from the basic single Brownian motion driving process of, for
example, Krugman (1987) if one is to do serious empirical work in this area.

Figure (4) shows the solutions for the base assumption of a = 9 in cases with and
without jump components. The solution without jump components supposes that the
other parameters (i.e. the drift term and the coefficient on the Brownian motion) are as
estimated in the model with jumps. Figures (3) and (5) give the corresponding solutions
for the cases in which @ = 4.5 and a = 13.5 respectively. '

A consistent pattern in these plots is that the trade off between exchange rate and
fundamentals in the presence of the band becomes more favourable when one includes
jump terms and as money demand becomes more elastic. To explain this phenomenon,
recall, firstly, that G(k) = Agk+ 4; + Az exp(&1k) +Aj exp(&k), and, secondly, that
Ap = 1 in the free float and in the middle zone of the baund solution, while
Ao =1/(1+ aA1), 1/(1 + aA;) in the upper and lower zones. A large value for « in the
presence of jump components thus improves the ‘direct’ linear trade off between ¢ and .

!See Boughton (1990). Boughton estimates a semi-elasticity of demand for UK M1, with respect to short
term interest rates of 0.09. Given the use of the uncovered interest arbitrage formula in the derivation of
the basic exchange rate equation in footnote 3 above, it is necessary to express interest rates so that, for
example, a 10% rate equals 0.1. In this case, Boughton’s figure becomes 9

2These results resemble those of other studies that have modeled financial return data with mixed
Brownian-Poisson processes. Drift parameters are generally difficult to estimate precisely, while coefficients
on Brownian terms tend to be large and highly significant (see Ho, Perraudin and Sorensen (1989) and the
references cited therein).

3Note that the correct distribution for the likelihood ratio statistic when parameters are not identified
under the null is hard to determine (see Ho, Serensen and Perraudin (1989) for a discussion of this issue in
the context of ML estimation of mixed Brownian-Poisson processes). A recasonably safe expedient, however,
is to take a y? distribution with degrees of freedom equal to the total number of parameters associated with
the jump components.
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Figure 4. The Exchange Rate Solution for a=13.5

(With jumps)
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Figure 5. The Exchange Rate Solution for o=9

(With jumps)
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This effect is in addition to the nonlinearities close to the edge of the band required by
smooth pasting. The intuition behind these effects is clearly that, even within the strict
interior of the band, the authorities’ truncation of jumps affects expected movements in
the exchange rate in a stabilizing fashion.



Table 1: ML Estimation Results

LParameter [ Value l T-Statistic ’
Two Jump Process Model
Po -0.01 -0.14
3 0.82 21.14
32 2.58 7.18
s 251 -5.43
A 0.20 5.03
Ay 0.15 3.55
One Jump Process Model
o -0.03 -0.76
o 0.92 27.69
32 2.86 7.26
A 0.03 2.38
Model Without Jump Processes
3o 0.05 1.08
N 1.04 33.20
Likelihood Ratio Statistics Value
HO:no jumps, H1:2 jumps 46.76*
HO:1 jump, H1:2 jumps 17.92%*

[ HO:no jumps, H1:1 jump ] 28.81** _]
Notes: log exchange rate changes were scaled
by 100 to facilitate estimation.

*The relevant 1% significance level
for \2(4) is 13.28.

**The relevant 1% significance level
for v2(2) is 9.21.




VII. Conclusion

This note has extended existing models of exchange rate determination within a
target zone to the case in which the driving process for fundamentals includes
discontinuous point process components. Models of this kind have rather different
implications for the behavior of the authorities’ foreign exchange reserves than those with
continuous fundamentals since, in the presence of jump fundamentals, the central bank
may have to intervene in large quantities to defend the target zone.

An important field for future research is the empirical estimation and testing of
target zone models. The empirical evidence advanced in Section 6 suggests that the
stringent restrictions placed upon exchange rate distributions by, for example, the simple
Krugman-type Brownian motion exchange rate model are difficult to square with the
data. The introduction of Poisson or other point process components may partially
remedy this problem since it allows one to derive models in which discretely sampled
exchange rate data las quite general distributions.
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