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Abstract 

This note derives closed form solutions for exchange rates in 
terms of fundamentals within a fully credible band exchange rate regime 
when the fundamentals are driven by Brownian motion and multiple point 
processes. The inclusion of point processes allows one to relax quite 
substantially the distributional assumptions about exchange rates 
implicit in models based on Brownian motions alone, and should 
therefore prove of use in empirical applications. Models with 
discontinuous driving processes also differ from the Brownian motion 
model in that monetary authorities will be obliged periodically to 
intervene on a large scale in discrete amounts. 
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Summary 

This paper analyzes the behavior of the exchange rate within 
a hand model of exchange rate determination when fundamentals are 
driven by Prownian motion and multiple point processes. It derives 
closed form expressions for the exchange rate as a function of fun- 
damentals under two different assumptions about the intervention 
policy followed by the government. 

The inclusion of discontinous components in the driving process 
is important, first, because it allows one to relax very considerably 
the stringent restrictions placed by existing models upon exchange 
rate distributions. This relaxation is likely to prove very useful 
in empirical work. Second, an important difference between the 
models developed in this paper and those hased on continuous funda- 
mentals is that the authorities will need to intervene periodically 
on a large scale to prevent realignments. 





I. Ilit.rodurt.ion 

The growing literature 011 hautl models of exchange rate clctcrniiun tiou’ has relied 
idltlost exclusively on continuous l~rorcsscs t.o drive the filIltlallltlnt;lls. The only esceptious 
are papers hy Svenssou (1989) and (1990) in which a Poissou cc~~uipcmrut is used to model 
periodic rcaligumeuts in eschaugc rate Im~cls. Alt.liough tile presc~~ce of devaluation risk 
iut.rocluccs ;111 extra premiuni int,o t.hc rclatiouship hetwecn fiin~laiiic~utals arid exchange 
rates, it does not significantly change t.lit a.ualysis thanks to Sveusson’s assumptions, first, 
that t.he Poisson process generat.ing the shocks is independent of the Browiian niot~iou 
term in t.lle fundanlentals. and. second, that t.he baud for f~lItdamtnt.als jmnps up hi 
esactly the same amount as the fundau~cutals themselves. 

I11 this paper, \ve iuvest,igate the implications of introducing jliinl) coniponeuts into 
t.llr funda.meutals while assuming that the ba.ud itself is fully crediljle. -\ssunling mixed 
Browuiau nwtion-Poisson process fuuda?.nieuta,ls, we examine t\vo forriis (c)f iutervent,iou lj~- 
tlic moueta.ry aut,liorities. Under the first, the authorit,ies ‘truncate’ jumps that wc~uld 
otherwise take fundanleutals subside t,heir prescribed baud. Under tile secoud~ t.he 
aut,horit,ies ‘reflect,’ t,he discrete jumps in fuutlament.als back iuto the 1~~11~1 interior. As we 
argue iii Sect,iou 4 of the paper, t,lte form of t.hc rela.tiou lwtwcen f:schauge rates aud 
flmclairlc:utals is determined by the ‘inst~alltmeous uncertniut,y’ iu t.hs driving process. If 
tile rat.e of j~InIp of a point process is houutled and right. contiiluous, tlIPI1 t?1x?Il if it evrJlvW 

at.oclia.st.ically over t.ime, t,liis Lvill lint. cn1it.rihiit.e t.O the iIlSt~llti~IlW~llS tIIicertaiIlt~~ 

asscociated jvitll the fundanleuta1.s. This fact, enables us to genernlize our l)a.sic results fo1 
Poissoii I)rocesses to a very wide class of point. processes. 

The importance of the results in this p;r.per is t.wo-fold. First, esisting models of 
tXCllit.Ilge rate l~iutls place st~ringeut rest,rictions upon the distril)utims of discret,e time 
incrcnlents in esclia.uge rates. While e1npirical work in this area is just, beginiiig, it. is 
likely t.hat these dist.rihut,ional restrict,ious will rapidly prove a ll;\.iidicap in the 
de~~el~q~ulent of niodels tl1a.t have a. reasouahle chance of fittill,? the data.. St,atistical 
st.udies of financial ret.urn distril)ut.ious iii other area.s have cousist.eut~ly showx t.ha.t simple 
u0rina.l distrihut.ious fit return data cluiw poorly. 2 Sectiou G of this leaper reports the 
result,s of est.iniating a nlisetl Brro~~IIian-PoissoIl process using ~~kly data ou the 
src-rlillS-tleiitscllemark esclianjie rate l)ct.\veeu 19SO aud 1990. Likclil~ootl ratio test.s I. 
~trorigly reject the rcstrictiou of this nioclel to a I)urely Bronuinu uiotiou forcing process. 
-4 WCOII~ Altrihution of this paper is t.hat. it sl~ows how the aiit.horities niay he obliged t.o 
e11ipl0y reserves in non-negligil)lr aniouuts to defend the int.erventiou lmrities. If news 
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a.ffecting fundamentals is ‘lumpy’ or discontinuous t.hen t,he a.ut.horities may ha.ve to ca.rr> 
out large-scale interventions if the band is to be maintained. 

The empirical results reported in the last Section of this paper suggest interesting 
results concerning the tradeoff bet,wecn exchange rate and fundamentals wit.h and without 
jump processes. From a.n estimation of the free float sterling-deukchemark excha.nge rate, 
it is possible to identify all but one of the paramet,ers of the relationship that would hold 
between exchange rat.e and funda.mentals in the presence of a credible ba.nd. A reasonable 
value for the remaining free pa.rameter may be chosen on the basis of past empirical work 
on money demand. Solving the systems of equations characterking the exchange rate a.s a 
function of fundamentals, I show that, at least for this parametrization, the inclusion of 
jump components improves the tra.deoff since the a.uthorities’ commitment to offset jumps 
t.hat. would push fundamentals outside their prescribed band serves to stabilize t.he 
exc.hange rate even well int,o t,he interior of the target zone 

II. The Free Float Model 

The basic equation of excha.nge rat.e det.ermina.tion may be written a.s: 

ft = kt + nZEe, 

where et and A-1 are the log eschange rate and t.he fundamentals respectively at. time t. 
where o is a constant, and where the espression $ &et denotes the quantity 
lim6,0+ El et+i-ef .l Now, suppose that funda.ment.als are the solution to the following 
stochastic differential equation: 

Here.the /3; i = 0, 1, .,3 are fixed const.ants. {147t}~=, is a. st,andardized Brownian motion 
and suppose initially t.1la.t t.he { Ai;t}& i = 1,2 a.re Poisson processes with rates of jump 
Ai i = 1,2. We shall discuss in a la.ter section what are the implications if the 

‘This equation may be derived f’rom a simple monetary model of exchange rate determination. Suppose 
that. the logarithms of money demand in the domestic economy and t.he rest of the world are equal to: 
mt = pt + ylyf + y2it - try and m; = p1 + yly; + yli; - v;. where yr and yr are t.he logs of the price 
level and output in the domestic country. ir is the nominal inkrest rate and 21~ represents velocity. Also. 
5, i = I,2 are fixed parameters, and * denotes the corresponding variable for the rest. of the world. Suppose 
t.llat Purchasing Power Parity (P.P.P.) holds. i.e. pt = el + p;. Uncovered int.erest. rat.e parity implies that 
it - i; = $Eer. Subst.ituting in this last expression for the interest. rate diKerent.ial and using the P.P.P 
condit.ion, one may derive equation 1 in the text where the ‘fundamentals’ k, are defined as: kt z ?I( y;-yyr)+ 
lILt - 717;+ I!* - 11;. and where o = -72, 
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{ ll’it}~~ i = 1 ,2 are more general point processes. By a generaked version of Ito’s lemma. 
(see Elliot,t (19S2) Theorem 12.19): 

de,, E dG(k) = /3,,G’(b,)dt + ,~$G’(k,)dlV~ + GG”(k,)dt + 

o[G(kt t 132) - G(kt)]dA$t t a[G(kt t Ps) - G(kt)]d&t 

(3) 

Taking expectations and subst,ituting in equation (1) yields: 

G(k,) = kt + cu/?,,G’(kt) •t n$G”lh,) f o[G(kt+/32)-G(kt)]X, t o[G(kt+/3J)-G(kt)]X2 

The difference between this equation and the corresponding result without, jump 
components is the presence of the difference terms on the right ha.nd side. In many 
stochastic process applications, the difference t.erms that. result from the inclusion of jump 
components mean that. only numerical solutions are possible. 1 In this case, however, t.he 
fa.ct that the solution for t.he continuous case includes just linear and exponential terms 
mea.ns that. a simple analytical solution is possible. To see t.his, guess the solution: 

Ta.king derivatives of G( .) and substitut,ing in equation (4) yields a 1inea.r expression 
involving constants and terms in kt. and esp(<;kt) i = 1 ,2. Equa.ting coefficients leads to 
the system: 

-40 = 1 (6) 

241 = cvA(J ( p(J t /32x, t /33X*) (7) 

A2 ( +x2) = A2 ( a: 9 
AIeq(lld2) t X2esp(td%) t i311(1 t ,<i 

- ) 
(8) 

Thc~ equa.tions determine the pa.rameters .-lo, A,, (1 and [?. If one takes the solut.ion that 
implies no bubbles for t.he free floa.t exchange rate, one has A” at unity, -41 equaling the 
t,ot.al drift in the process including the mesa increase in fundamentals due t.o t.he jumps, 
a.1ttl A2 = & = 0. Thus, bhe logarithm of t,he free float escha.uge ra.te itself is equal t.o: 

‘For example, solving the Fokker-Plank equat.ion for the conditional densit.y of a process is often more 
clillicult when the underlying forcing process has jump componcut.s. 
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The only difference between this espression and the standard formula for the free float 
escha.nge ra.te wit.11 Brownian motion fundament.als is the intercept t.erm which here 
includes not just the drift parameter, /30, but also the per period rates of jump weighted 
by their respective jump sizes. Together, the bra.cketed terms on the right. hand side 
comprise the total conditionally expected growth in the fundamentals per unit of time. 
One might. note that this free float solution corresponds to the free float solution obtained 
by Swenson (1989). In Svensson’s study Poisson component.s are used to model t.he idea of 
periodic realignments of the exchange rate. Svensson assumes that both fundament.als and 
intervention levels jump up or down a.t the same instant. By contrast, in our model, 
jumps represent shifts in t.he position of fundament.als relntizre to the int,ervention levels. 
Not surprisingly, in the free float ca.se without bubbles, the two approaches a.re identical. 
As we show in the nest section, however, when bands are present t.he solutions obtained 
differ subst.ant~ially. 

III. The Case with Band Int,ervention 

Now, suppose tha.t the a.uthorities intervene to defend upper and lower levels for 
funda.ment.als denoted by z a.nd k. The question immedia.tely poses itself: how do the 
a.ut,horities react to jumps in t,he fundamentals that wit.hout intervention would take them 
outside the range [&,F]? V arious a.pproaches are possible. In the next. section, we shall 
consider t.he case in which fundamentals are ‘reflect.ed back’ into the interior of the band 
by t.he authorities’ act,ions. From an analyt,ical point of view. that approach turns out t.o 
have important advantages. In t.his section, however, we concent,rate on t.he case in which 
the authorities ‘trunca.te’ the jumps. In other words, when fundamentals are less tha.n dz 
in distance from k then, in the event of a jump in 11’ rl? the a.uthorities intervene so t.hat 
the jump size a.fter intervention is K - 13 *. The authorit.ies perform a similar truncation of 
downward jumps near the k barrier. In t.his case, the fundamentals process a.fter the 
discrete int.ervent.ions associated with fundamental jumps may be described as follows: 

where the superscript,s h? m and 1 indica.te high, middle a.nd 101~ ranges within t.he normal 
band [I,-, X]. Note tha.t we a.ssume here that /32 > O? i;m < 0 and t,ha.t ,/32 - 1’33 > E - k. It. is 
straightforward to alter the a.na.lysis to treat the case in which both Poisson processes 
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jump up. For example, if p; > Oi = 1,2 and, without loss of generality, @r 2 /32, then 
t.here are again three ranges but this time given by [Jz-, z - /3r]. [z - or, r - ,021, and 
[Z - ;12?E]. 4 system resembling that of the free float solution, i.e. equations (6)-(g), holds 
in the low range. In the middle range? jumps in Nrt are truncated at the edge of the band, 
E, while in the upper range, jumps in either Nit or Nzl are t,runca.ted. Introducing 
additional jump processes, {Nit};“=, i = 3,4, .., I with positive or negative coefficients, 
13, i = 3,4, .., I, simply results in I - 2 additional ranges, each with its own syst.em of 
equations. Returning to the ca.se with a single positive and a single negative jump, one 
obtains the following three systems. For Case H, we have: 

For case M, the solution is of the same form as the system of free float equations (S)-(9), 
(i.e. in (6)-(g) one may replace Ao? Al, <r and (2 by A,“‘, A?, [y and FT). For Ca.se L, 
the solution is: 

A; = 1 - c&-lb (18) 

4 = (x( Abi3~1 t A$& + Ak,&XI + Ai esp(t[lQX, + Ah esp(&)& ) (19) 

A2 1 = A2 (20) 
CY 

A3 1 = A3 
a 

-X1 - X2 t Xresp([:Pz) t /Ml t +(&)2 (21) 

The 3 ,systems of equations corresponding t.o the three ranges determine the para.meters 
AJ,, A{, Ii, and ,!$ for j = h, m, 1. However, this still leaves us with sis undetermined 
parameters, namely 45,, Ai for j = hl m, 1. To see how these pa.rameters are tied down, 
consider first the behavior of t.he system in range H. 

Suppose that, funda.mentals follow the process given by equation (11) over the whole 
domains. This is a somewhat odd ifundamenta.ls’ process since it already includes the 
aut.horities’ ‘truncation’ of the jumps in the a.ctual fundament,a.ls. Also, if the process 
holds over the whole real line, t,hen the discontinuous part. consisting of jumps back to E is 
quit.e unrealistic for a.ny plausible fundamentals. However, what is important in this 



cont,ext is that the solution of equa.tion ( 1) with hypothetical funda.mcIl t,als obeying 
equation (11) in t.he presence of a reflecting barrier at x, is a. special case of solut.ions to 
the same cquat,ion in the ahscnse of such a ba.rricr. 

Now, equation (1) may he written a.s: 

G&)&t = k,nt $ &( G(kr+6r) - G(kt)) + o(btj (22) 

Suppose that G’(k) > 0, so that locally, it may be represerlt.etl as in Figure 1. t.ha.t is as a 
(locally) straight line crossing the horizontal at k. 

1 Figure 1: Bounda.ry Crossing 

/ 
G / 

/’ 
/’ 

/ 
G(K) / 

/’ 

/ / 
,‘. ,’ 

G(k) 

It is clear tl1a.t G(x) caurlot be an cquilihriunl in both the free float (locally linear) 
case am1 in the presence of the> band. since in the latter case there is zero proba.bility of 
fnndan~ent.rtls rising above k. Equilibrium can only hold if G’(Z) = 0. X similar argument 
holds for G’(b). JVe: therefore, have t.hc bounda.ry conditions G’( I;) = 0 and G’(k) = 0. 

Of t,he four remaining paramet.ers, two are reqllired to rnaiutain cont,inuit,y of G( .) at 
k - i32 and 4 - $3, il.ud tmm are needetl to ensure the continuity of G’( .) at the same two 
points. The fa.ct, t1la.t G’ must. be cont.inuous a.t t.he boundarirs l,etmww the t.1u.w ranges 



-7- 

may be seen from Figure 2. 

Fi: gure 2: Internal Boundary Crossing 

k 

Here, G” is the differentiable and hence locally-linear extension of G” into the 
range above E - /3 2. Given Jenson’s inequality, it is not possible for G”(z) to be a 
part.icular solution to the exchange rate equation both with and without the shift. in the 
stochastic regime unless the derivatives G”’ and G”’ are equal at x - /3z. Otherwise, G 
would be kinked at z - &, which would imply that it would be convex even locally at this 
point. A similar argument may be applied to G at Ic - ,&. 

IV. Reflected Jumps 

An alternative assumption about the authorities’ policy in the event, of a jump in 
fundamentals is t.o suppose that, instead of truncating t.he jump at, the edge of the band, 
they actually reflect fundamentals back in towards the center. Such a policy resembles to 
some degree the discrete interventions investigat,ed by Flood and Ga.rber (1989). 

In Flood and Garber, fundamentals are driven by a l3rownian motion but when t.he 
exchange rate hits the edge of the target zone, the authorit.ies shift fundamentals so the 
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eschangr rate jumps to some predetermined point wit.hin t.he zoue. Here we shall a.ssunie 
that, the a.uthorities’ iuttrveut~ion reflects the fixed size jumps so that if t,he process is a.t 
SOIW fra.ct,ioit. q, of it,s fixed jump size ,‘3, from the upper boundaq. then aft.er t,he jump 
occurs, it will l)e a,t. a. point (1 - q)/3i from the edge of the zone. 

\Ve adopt this assumption part.ly because of its analyt.ical tra.ct.ability, but oue ma.? 
justify it 1)~ the argument that the aut.horities react. differently to jumps t.1Ia.t take pla.ce 
clusc t.o the boundary compared wit,11 those occuriug furt.her away. Thus, the closer 
fundameutals are t,o t,he edge of t.he zone. t.he further they will push them iut,o t.he iut.erior 
of the baud. 

SVhcn the a.uthorities’ intervention policy follo\vs this patt.ern, the process for 
fimda.nicut~als after the intervcut~ion associated with jumps ha.s taken place. will be of the 
fom: 

Case H : (I/;, = /3l,flt t /jlffTT’i + (2Xr - 2kl- - /?2)dN1( + /3:jdIV?l , k,- E [x’ - /3?, K]( 23 

Ci3.W hl : dX:l = /3,dt + $1 di,l’> ,f /32(INlf + j?:jdN~, , kt- E [k - /j3, k - 1321 (24 

Case L : dk, = ,ti”& + /Y,dW, + /3&qrtt •t (2k - 2k,- - $a)rl,Yzt , kt- E [k,X: - /3a](25 

it. is a st,raiglttforivard esercise to derive the systems of equations for t.he para.met,ers A;‘. 
c3 for i = 0,l. 2,3? 1: = 1,2 $I; arid 3 = II, m7 1 that this system implies given equa.tion (A), 
guessing a. solution of the form of equation (5), aud then equating coefficieuts and using 
value matchiug and smooth past,ing coudit.ions. 

V. hilore General Point, Processes 

This sectiou shows how oue ca.u extend the above results to t.lte case iu which 
fundauicntals contain much more general point. processes than t,he Poisson processes 
eniployed above. It turus out. that the form of the solution in ba.ud models of this kind 
depends almost cnt.irely upon the cont,inuous part of the driving process. Hence! oue may. 
for example. iutrotluce autocorrelation aud 1leteroskeda.sticit.y into the fuudnmcutals 
process by way of a tliscoutiuiious componeut . 

It is liclI)ful t.0 adopt a more Ijrecise terminology than t.hat. eulployed up to now. 
Dehc a probability space by the triple (R, F, P). Suppose that fnudamentals a.re driven 
as l)efore by a. Browuian motion {Il;},zO anil t,wo poiut processes adapted t,o a filtration 
Ft. The point processes are dcfiucd a.s sequences of random mriables {T; ~ i = 1,2: ..} on 
(O,F,P) SUCll t.ltat. T;(d) < T,+,(W) for all ti E 0, i = 1,2, . . . The c.ouutiug processes 
associa,t.ed with these sequences ma! be writteu as: nrit E Ctl>, l(T,, _< t), i = 1,2. 
Assume that t.ltese point processes are non-esplosivc (i.e. theycanuot jump au infiuite 
nunil~er of times wit.liii-1 a finite period). 
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Assume that each point process has an Ft-progressive stochastic intensity, i.e. a 
nonnega.tive Ft-progressive process &, such that, for all n > 1, N;,r,,~,, - 

./Y” Ai,ds i = 1,2 is a mart,ingale. 

Given these definitions, it is easy to repeat the arguments of Section 2. Theorem 
12.19 of Elliott again yields a.n equation of t.he form of (3). Given that 
J[G( ks t bjl+i) - G( k,)]( dl\i:.g - Ai.qdS)y i = 1,2 are martingales (see Bremaud (19511, 
Theorem T9), and if one assumes that Xii, i = 1,2 are bounded and right continuous, one 
may use the Lebesgue averaging and dominated convergence theorems to show (see 
Bremaud (1951) page 25) that equation (4) holds as before. 

Clea.rly, if the intensities, Xi i = 1,2 just have to be bounded, right continuous 
F,-progressive processes t,o yield equations of the form of (4), this leaves considerable 
flexibility for empirical a.pplications. For example, in a study using daily data, one could 
allow Xi1 i = 1,2 to be functions, say, of the change in the previous day’s eschange rate. 
Alt,ernatively, using longer frequency data, one could think of Xi, i = 1,2 as being driven 
by other observable processes such as trading volume, real economic indicators or time. 

VI. An Application 

To investigate further the implicat.ions of incorporating jump processes into a band 
model, one may solve the systems of equations characterizing the solut,ion, given in 
Section 3. To make the exercise more interesting, the model wa.s pa.rametrized by 
estima.ting a stochstic differential equation of the form: 

where { lVt}E, and {Nit},“=, i = 1,2 indicate, as before, a standard Brownian motion and 
Poisson processes with const.ant. rates of jump, Xi i = 1,2. The data. used was the 
sterling-deutschemark exchange rate at each Wednesday closing from January 1980 to 
*July 199O.The number of observa.tions was S51. 

Assurnhg that this data is well-described by a free-float model with fundamentals 
driven by a Brownian motion and two Poisson processes, one can identify all the 
parameters of a credible band model like that of Section 3, with the esception of o. In 
other words, one ca.n determine from the behavior of the free float exchange rate, how t.he 
escha.nge ra.te would behave if the Brit.ish authorit,ies introduced a. band a.gainst the 
deutschemark that t,he markets found credible. The one free parameter, cyI ma.y be 
thought of as minus the interest elasticity of money demand. Choosing a. reasonable value 
for CY (the literature on money demand functions suggests such a reasonable figure would 
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be around 9)‘, and employing equations (6)-(g), (14)-(21) a.nd the smooth past,ing and 
value matching boundary conditions, one ca.n obtain a function G( .). 

The results of the maximum likelihood estimation are given in Table 1. 4s one ma.y 
see, the drift parameter is close to zero so that while it.s standard error is in line wit.11 tl1a.t. 
of other parameters, the t-statistic is not significant. Most of the mean change in the 
series is due to the jump components. While the estima.ted jump sizes a.re close to ea.ch 
other in absolute size the positive jump tends to occur more frequently. The estimated 
ra.tes of jump suggest that jumps occur every 2 l/2 to 3 weeks. Finally, the instantaneous 
standard deviation parameter on the Brownian motion is large and very significantly 
different from zero.2 

Table 1 also provides likelihood ratio statistics for the presence of one or two 
Poisson components in the free floa.t exchange rate. The restriction of the two jump 
process model to a one jump process model is overwhelmingly rejected, as is the 
restriction from a one jump to a no jump model. 3 These tests show the importance of 
generalizing the model from the basic single Brownian motion driving process of, for 
example, Krugman (1957) if one is to do serious empirical work in this area. 

Figure (4) shows the solutions for the base assumpt.ion of cu = 9 in cases with and 
without jump components. The solution without jump components supposes that the 
other parameters (i.e. the drift term and the coefficient on t.he Brownian motion) are as 
estimated in the model with jumps. Figures (3) and (5) g ive the corresponding solutions 
for the ca.ses in which CI = 4.5 and cy = 13.5 respect,ively. 

A consistent pattern in these plots is tha.t the t.rade off between eschange rate and 
fundamentals in the presence of the band becomes more favourable when one includes 
jump terms and as money demand becomes more elastic. To explain this phenomenon, 
recall, firstly, tl1a.t G(k) = Aok+ Al + ill esp([lk) +-+I 3 esp( Jzk), and? secondly, that 
-‘lo = 1 in the free float and in the middle zone of the band solut.ion, while 
&=1/(1+~A~),1/(1+ .A) N 2 in the upper a.nd lo\ver zones. A large value for CI in the 
presence of jump components thus improves the ‘direct’ linear tra.de off between E and k. 

‘See Boughton (1990). Boughton estimates a semi-elasticity of demand for [TIC hll, wit.h respect to short 
term interest rates of 0.09. Given the use of t.he uncovered interest arbitrage formula in the derivat.ion of 
the basic exchange rat.e equation in footnote 3 above, it is necessary lo express interest rat.es so that, for 
example, a 10% rate equals 0.1. In this case, Boughton’s figure becomes 9 

2These results resemble those of other studies that have modclcd financial ret.urn dat.a with mixed 
Brownian-Poisson processes. Drift parameters are generally diflicult t.o estimate precisely, while coefkients 
OII Brownian terms tend to be large and highly significant (see Ho, Perraudin and Sorensen (,1989) and the 
references cited therein). 

3Note that the correct distribution for t.he likelihood ratio statistic when parameters are not identified 
under the null is hard t.o determine (see Ho, Stirensen and Perraudin (1969) f or a discussion of this issue in 

the context of hlL estimation of mixed Brownian-Poisson processes). A re.asonahly safe expedient, however, 
is t.o take a x2 distribution with degrees of freedom equal to the total number of paramet.ers associated with 
the jump components. 
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Figure 3. The Exchange Rate Solution for c1=4.5 
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Figure 4. The Exchange Rate Solution for crz13.5 
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Figure 5. The Exchange Rate Solution for (2=9 
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This effect is in addition to the nonlinearities close to the edge of the band required by 
smooth pasting. The intuition behind these effects is clearly that, even within the strict 
interior of the band, the authorities’ truncation of jumps affects expected movements in 
the exchange rate in a stabilizing fashion. 
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Table 1: RIL Est.imation Results 

Paramet.er VdUl? 1 T-St,at.ist.ic 

Two Jump Process hlodel 

/ IS -2.51 -5.43 
Xl 0.20 5.03 
A2 0.15 3.5.5 

One JUI~D Process h,lodel 

1 h:Iodel R:ithout. JumD Processes 
3 to 0.015 1.05 

,jr A I 1.04 33.20 

Likelihood Ra.tio Statistics 

HO:no jumps, Hl:l jump 1 2S.S1** 

Not,es: log exchange rat.e changes were scaled 
by 100 t.o faci1it.at.e est,imation. 

*The relevant lc% significance level 

for j’(4) is 13.28. 

**The relevant, 1% significance level 

for \ ‘(?I is 9.?1. L c L 
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VII. Conclusion 

This note has extended existing models of exchange r&e det.ermina.tion within a 
target, zone to the case in which the driving process for fundamentals includes 
discorttiuuous point, process components. Models of this kind ha.ve rather different 
iulplica.tions for t,he behavior of t.he authorit,ies’ foreign exchange reserves t,han those with 
corltinuous fundamentals since, in the presence of jump fundamentals, the central bank 
may have to intervene in large quantities t,o defend the target zone. 

An import,aut. field for fut.ure research is t.he empirical est.imation aud testing of 
target. zone models. The empirical evidence advanced in Sec.tion G suggests that the 
striugeut restrictions placed upon exchange rate distributions by, for example, the simple 
Iirugman-type Browkm motion eschange rate model are difficult to square with the 
data. The introduction of Poissou or ot,her point process components may partially 
rcmedq’ t.his problein siuce it allows one t.o derive models in which discretely sa.mpled 
eschaugc ra.te data. 1ta.s quite general distributions. 
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