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Abstract 
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spillovers, casting doubts on the robustness of Coe and Helpman’s findings. We show that 
Keller’s “random” weights are essentially simple averages with a random error. We derive 
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nonexistent, as would be expected. 
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1. INTRODUCTION 

Keller (1998) reexamines Coe and Helpman’s (1995) (CH) analysis of international research 
and development (R&D) spillovers focusing on the weights used to define the foreign R&D 
capital stock. CH define a foreign R&D capital stock for 22 industrial countries using 
bilateral import shares to weigh the domestic R&D capital stocks of each country’s 21 trading 
partners. Keller presents regressions analogous to CH’s using an alternative definition of the 
foreign R&D capital stock based on “random” weights. Keller’s main conclusion is that the 
“randomly created trade patterns give rise to positive international R&D spillover estimates, 
which are often larger, and explain more of the variation in productivity across countries than 
if ‘true’ bilateral trade patterns are employed” (Keller, 1998, p. 1469). 

If true, Keller’s results call into question the usefulness of CH’s measure of foreign R&D 
capital, which is at the center of their empirical analysis, and cast doubts on the robustness of 
their finding of substantial international R&D spillovers. They also raise doubts about the 
results reported in Coe, Helpman, and Hoffmaister (1997) (CHH), who use an analogous 
measure of foreign R&D capital in their analysis of R&D spillovers from industrial countries 
to 77 developing countries. Keller’s results are somewhat surprising, since using truly random 
shares to weigh domestic R & D capital stocks would tend to generate a foreign R & D 
capital stock that is itself a random variable, which would not, in general, be correlated with 
productivity. 

Keller notes that his random bilateral import shares are similar to equal weights (or simple 
averages of trading partners’ R&D capital stocks). We show that the probability distribution 
of Keller’s “random” shares indeed concentrate tightly around the inverse of the number of 
trading partners, suggesting that they are not random. We derive three alternative sets of 
random weights that do not exhibit this property, and present their probability distributions. 
We then present regressions showing that when these randomly created trade patterns are 
used to define the foreign R&D capital stock, the estimated international R&D spillover 
estimates are extremely small, and the estimated equations explain less of the variation in 
productivity across countries than if “true” bilateral import shares are employed, as would be 
expected. From these results we reach the opposite conclusion from Keller, namely, that there 
is no evidence that randomly created trade patterns give rise to positive international R&D 
spillover estimates or do a better job of explaining productivity developments than the bilateral 
import shares used by CH; indeed they do worse. 

In the next section we discuss the generation of random shares and present histograms or 
probability density functions of Keller’s shares and the three random shares that we derive; 
analytical results underlying this section are presented in the Appendix. Section III presents 
the estimation results. Section IV concludes. 
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II. GENERATINGRANDOMSHARES 

Keller derives his shares in the following way (Keller, 1998, p. 1476). First, he obtains a 
22x22 matrix consisting of random elements drawn from a uniform distribution in the interval 
0 to 1. He then sets the main diagonal equal to zero, reflecting that a country’s domestic 
R&D capital stock is not used in the calculation of its foreign R&D capital stock. Each 
column is then divided by its sum so that the shares for each country add to 1. This final step 
means that the shares are no longer uniformly distributed, since any single share is a nonlinear 
transformation of 2 1 uniform variables.’ 

We show in the Appendix for the simplified case of two trading partners that the division of 
each column by its sum concentrates the marginal distribution of the shares around the value 
of %, the inverse of the number of trading partners. For more than two trading partners, we 
derive the marginal distribution of the shares numerically. We do this for a fixed number of 
trading partners, n, with n=2, 3, 4, . . . . 21. For each n, we generate 100,000 replications and 
plot histograms to illustrate the empirical distribution of Keller’s shares. These histograms are 
shown in Figure 1; descriptive statistics for each histogram are given in Table 1. It is clear 
that the empirical distribution of the shares concentrates around l/n, the inverse of the 
number of trading partners, indicating that the shares are not random. Moreover, the degree 
to which the distribution concentrates around l/n increases as n gets large. With n=21, the 
number of trading partners in CH, the variance of the empirical distribution is less than 0.001, 
with no share exceeding the value of 0.15 in 100,000 draws! 

We conclude from these results that Keller’s shares are more accurately described as simple 
averages with a random error, rather than as random shares. Although there is no unique way 
of generating random shares that sum to unity, an important characteristic of any set of 
random weights is that their distribution does not concentrate around the inverse of the 
number of trading partners. We now propose three alternative ways of generating random 
shares, none of which have this property. 

One way of thinking about the problem of generating n random shares is how to divide the 
interval between 0 and 1 into n random segments, with the random shares being the “length” 
of each segment.’ The simplest procedure is to generate a sample of n-l random variables that 

‘Keller (1997) does not discuss the effect that this nonlinear transformation has on the 
distribution of the shares, although he does discuss the relationship between the average of the 
ordinary least squares (OLS) estimates and OLS estimates using the average foreign R&D 
capital stocks. 

2A related problem of randomly dividing a random interval is discussed in Assche (1987) and 
Johnson and Kotz (1990) who consider the distribution of a variable that is uniformly 
distributed in a random interval. 
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Figure 1. Histograms of Kellers Shares 
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Table 1. Descriptive Statitistics for Keller’s, Random Division, and Random Sequential Shares 

n Keller’s shares Random division Random sequential 

mean variance maximum mean variance maximum mean variance maximum 

2 0.499 0.0567 1.000 0.500 0.0833 1.000 0.499 0.0834 1 .ooo 

3 0.334 0.0325 0.994 0.333 0.0556 1.000 0.334 0.0740 1.000 

4 0.25 1 0.0195 0.971 0.250 0.0375 0.998 0.251 0.0674 1.000 

5 0.200 0.0127 0.791 0.200 0.0267 0.990 0.202 0.0620 1.000 

6 0.167 0.0090 0.738 0.167 0.0198 0.942 0.166 0.0557 1.000 

7 0.143 0.0067 0.811 0.143 0.0153 0.924 0.142 0.0507 1.000 

8 0.125 0.0051 0.568 0.125 0.0122 0.859 0.125 0.0468 1.000 

9 0.111 0.0041 0.46 1 0.111 0.0099 0.798 0.111 0.0430 1.000 

10 0.100 0.0033 0.414 0.100 0.0082 0.755 0.100 0.0403 1.000 

11 0.091 0.0027 0.366 0.09 1 0.0069 0.752 0.09 1 0.0373 1.000 

12 0.084 0.0023 0.369 0.083 0.0059 0.693 0.083 0.0348 1.000 

13 0.077 0.0019 0.331 0.077 0.0051 0.666 0.077 0.0325 1.000 

14 0.071 0.0017 0.269 0.071 0.0044 0.596 0.071 0.0302 1.000 

1.5 0.066 0.0015 0.252 0.067 0.0039 0.547 0.066 0.0287 1.000 

16 0.063 0.0013 0.209 0.063 0.0034 0.593 0.062 0.0267 1.000 

17 0.059 0.0011 0.206 0.059 0.003 1 0.493 0.060 0.0264 1.000 

18 0.056 0.0010 0.182 0.056 0.0028 0.510 0.056 0.0249 1 .ooo 

19 0.053 ;0.0009 0.226 0.053 0.0025 0.521 0.052 0.0232 1.000 

20 0.050 0.0008 0.163 0.050 0.0023 0.485 0.050 0.0225 1.000 

21 0.048 O.,OOOS 0.146 0.048 0.002 1 0.453 0.048 0.0214 0.999 

Note: Based on 100,000 replications except for the mean and variance of the random division of shares which are distributed Beta(1, n-l). 

The minimum for all shares is zero, for all values of n. 

are uniformly distributed in the interval between 0 and 1. After arranging these n-l random 
variables in ascending order, random shares can be obtained as the difference between the 
adjacent random variables; the first and last shares are defined, respectively, as the difference 
between zero and the first-ordered statistic and between the last-ordered statistic and one. We 
refer to these shares as “random division shares.” 

The analytical distribution of these random division shares can be obtained from known 
distributions of order statistics for uniform samples (see Appendix). The probability density 
functions, which are Beta (1, n-l), are shown in Figure 2 for n=2, 3, 4, . . . , 2 1. The distribution 
of these shares is such that the mean is the inverse of the number of trading partners, as was the 
case with Keller’s shares (see Table l).” The variance of the shares also shrinks as the number of 
countries increases, although considerably less so than is the case with Keller’s shares. The 
important difference, however, is that the distributions of the random division shares do not 
cluster around the mean, and hence the shares do not resemble a simple average. This difference 
is readily apparent in a comparison of Figures 1 and 2. 

3Because these shares are identically and independently distributed and add to one, their 
means must equal l/n. 
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Figure 2. Probability Density Functions for Random Division Shares 
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Our second method of generating random shares involves a sequential generation of n random 
numbers (see Appendix). The first random share, sl, is drawn from a uniform distribution in the 
interval 0 to 1, the second random share, s,, is drawn from a uniform distribution in the interval 
0 to l-sr, the third random share, s3, is drawn from a uniform distribution in the interval 0 to l- 
s,-s,, and so on until s,,-~ is obtained. The last share, s,, is calculated as 1 minus the sum of the 
previous n-l shares. Since on average s,>s2, s2>s3, and so on, we randomize these shares to 
avoid assigning (on average) the largest weight to the first country’s R&D capital stock, the 
second-largest weight to the second country’s R&D capital stock, etc. We refer to these shares 
as “random sequential shares,” 

For our purposes, an attractive feature of the random sequential shares is that they generate 
relatively large shares. This is apparent in Table 1 where, for n=21, the maximum value for the 
random sequential shares is 1 .O, whereas the maximum values for Keller’s and the random 
division shares are 0.15 and 0.45, respectively.4 A distribution with relatively large shares more 
closely resembles the true bilateral import shares used by CH, where the values ranged from 
essentially zero to as high as 0.8 for the share of Canada’s imports from the United States (CH, 
Table A.4; and Keller, 1998, Table 1). 

As before, we obtain the statistical distribution of the random sequential shares numerically by 
the same Monte Carlo procedures used to generate the histograms of Keller’s shares. The 
histograms of the random sequential shares are presented in Figure 3 and the descriptive statistics 
are given in Table 1. Compared with the probability density functions for the random division 
shares, the histograms of the random sequential shares extend further to the right, indicating the 
higher probability of large shares. 

Our third set of random weights is derived from the actual bilateral import data used by Coe and 
Helpman. We obtain a 22x22 matrix of random bilateral imports by random sampling with 
replacement from the set of 441 (21x21) actual bilateral trade flows. After setting the main 
diagonal to zero, the shares are obtained by dividing each column by its sum.5 We refer to these 
shares as “random sampling shares.” 

4For the random division shares in Table 1, the mean and variance are properties of the 
underlying beta distribution, whereas the maximum and minimum are obtained from a Monte 
Carlo generation of 100,000 replications. 

‘This procedure is similar to that used in Keller (1997) for the G7 countries and Sweden, 
although he resamples the bilateral trade shares directly. Creating the random shares from the 
original import data is preferable to randomly selecting from CH’s bilateral shares because it 
does not limit the random shares to the same values as the true bilateral shares. 



-9- 

Figure 3. Histograms of Random Sequential Shares 
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The histogram of the random sampling shares, which Figure 4. Histogram of Random Sampling Shares 

is obtained from a Monte Carlo generation of 
100,000 replications using actual data for 1990 for 
all 22 countries, is shown in Figure 4. As with the 
other randomly generated shares, the distribution is 
nonsymmetric; it is skewed to the left with a mean of 
0.048, but it is not concentrated around this mean. 
The maximum value of the shares is 0.85, which 
is similar to the maximum of the true bilateral import 
weights used by CH. 

III. ESTIMATION RESULTS 

As discussed in Coe and Helpman (1995), their empirical analysis of international R&D spillovers 
is based on recent theoretical models of innovation-driven growth. Their simplest specification, 
omitting time subscripts, is 

log F;: = a; + &log s; + aflog S{ + fzj (1) 

where i is a country index (i=l, . . . . 22), log F is the log of total factor productivity (TFP), Sd 
represents the domestic R&D capital stock, grepresents the foreign R&D capital stock, and ei is 
an identically and independently distributed error term. This specification can be thought of as a 
multicountry extension of models relating TFP to only the domestic R&D capital stock, which 
would be a special case with af=O. 

For each country, the foreign R&D capital stocks are defined as a weighted average of the 
domestic R&D capital stocks of its trading partners 

where Qj are the weights for country i applied to the domestic R&D capital stocks of countryj, 
with i&j =O and zjaij= 1. These weights, of course, are the focus of this paper. In CH, the 
weights represent bilateral import shares. In the estimation results reported below, we also use 
weights defined as a simple average (i.e., aij =1/21, for all i, j, i+j), as well as random division 
shares, random sequential shares, and random sampling shares, as discussed above. 

CH report two other specifications, one of which simply allows ad to differ between G7 and 
other countries 

log ~~ = a: + adlog Sf + a7G710g St + aflOg S{ + ei (2) 

where G7 is a dummy variable taking the value of 1 for G7 countries. 
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The third specification reported by CH allows for the interaction between foreign R&D capital 
stocks and the level of international trade 

log ~~ = a: + adlog St + a7G710g St + afmilog Sif + 4 (3’) 

where m is the share of imports in GDP. Here it is important to note that CH’s R&D capital 
stocks are indices with 1985=1. The transformation of the R&D capital stocks into indices is 
innocuous in equations (1) and (2), as it affects only the unreported country-specific constants. In 
equation 3’, however, the multiplication of the import share by the log of the foreign R&D 
capital stock means that the estimated elasticity of TFP with respect to the import share (aflog 
Si, where the bold indicates the sample average) is not invariant to the units of SA as pointed out 
by Lichtenberg and van Pottlesberghe de la Potterie (1998). With the R&D capital stock indices 
having values of about 1, log S{sO, and hence the estimated elasticity of TFP with respect to the 
import share is about zero. If the R&D capital stocks are (correctly) not converted to indices, 
however, log S{= 12.‘j In this case, it is necessary to add the import share as an additional 
variable to avoid imposing cross restrictions on the estimated elasticity of TFP with respect to the 
import share (&log S$ and the foreign R&D capital stock (afmi). For this reason, we estimate 
a slightly expanded version of CH’s final specification 

log ~~ = .F + adlog Sf + a7G710g St + afmj log S[ + a m mi + Ei (3) 

In this specification, the estimated elasticity of TFP with respect to the import share is 
a m+aflog Sf7 L’ 

Table 2 reports estimation results based on equations (l), (2) and (3). The equations are 
estimated on pooled data for 1971-90 for 22 industrial countries. The variables are entered in 
level form, and CH interpret the equations as pooled cointegrating equations. We report standard 
errors as an indication of the precision of the coefficient estimates; however, it is not, in general, 
correct to interpret the ratio of the coefficient estimates to the standard errors as t-statistics and 
use them to test for the “significance” of variables because their distribution is not standard. 

For each specification, we report five regressions differing only in the weights used to construct 
the foreign R&D capital stocks: CH’s bilateral import weights, a simple average (which is similar 
to Keller’s), random division weights, random sequential weights, and random sampling weights. 
Equations (li) and (2i) essentially replicate CH’s original results based on bilateral import 
weights. In equation (3i), which is also based on bilateral import weights, the estimated 
coefficients on the first four variables-the variables in equation (3’) above-are very similar to 
those in CH. Moreover, the estimated elasticity of TFP with respect to the import share is 
essentially zero, that is, a “+aflog S, / = 0 which is consistent with CH’s original results. , 

6HereaRer, all R&D capital stocks, Sd and g, refer to unindexed variables. 

7See also the discussion in Lichtenberg and van Pottlesberghe de la Potterie (1998). 



Table 2. Total Factor Productivity Estimation Results with Alternative Weights for Foreign R&D Capital 
(pooled 1971-90 data, 22 countries, 440 observations) 

Equation (1) Equation (2) Equation (3) 
Bilateral Average Random Random Random Bilateral Average Random Random Random Bilateral Average Random Random Random 
import division sequential resampiing import division sequential resampling import division sequential resampling 

( 9 (ii) (iii) (i-4 (4 t 9 (ii) (iii) (4 (4 ( 9 (ii) (iii) (iv) 69 

log Sd 0.097 0.026 0.128 0.135 0.134 
(o.009) (0.01 I) (0.007) (0.006) (0.007) 

0.089 0.033 0.107 0.112 
(0.008) (0.01) (0.007) (0.006) 

0.111 0.082 0.047 0.105 0.111 
(0.006) (0.008) (0.008) (0.007) (0.007) 

0.110 
(0.007) 

G7*log S” 0.134 0.100 0.148 0.151 0.150 0.155 0.162 0.152 0.151 0.151 
(0.016) (0.016) (0.016) (0.016) (0.016) (0.015) (0.014) (0.016) (0.016) (0.016) 

log d 0.093 0.222 0.013 0.002 0.005 0.060 0.177 0.009 0.001 0.003 
(0.016) (0.019) (0.005) (0.002) (0.003) (0.015) (0.019) (0.005) (0.002) (0.003) 

rn * log sf 0.263 0.503 0.040 0.005 
(0.04) (0.043) (0.014) (0.005) 

.I 
0.015 I--L 

(0.008) N 
I 

nz -3.187 -5.733 -0.444 -0.047 -0.154 
(0.486) (0.487) (0.162) (0.071) (0.102) 

Standard Error 0.049 0.045 0.05 1 0.051 0.05 1 0.046 0.043 0.046 0.047 0.047 0.044 0.040 0.046 0.047 0.050 

R’ 0.630 0.698 0.607 0.601 0.602 0.683 0.725 0.675 0.672 0.672 0.702 0.754 0.679 0.672 0.674 

Adjusted R2 0.609 0.68 1 0.585 0.579 0.580 0.664 0.710 0.656 0.653 0.653 0.684 0.739 0.660 0.652 0.654 

Notes: The dependent variable is the log of total factor productivity. S 
d. 

IS the domestic R&D capital stock; ,# is the foreign R&D capital stock; G7 is a dummy variable equal to 1 for G7 

countries; m is the ratio oftotal imports to GDP. Regressions with the same lowercase roman numerals are identical except for the weights used to calculate sf 
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The regressions based on simple averages of trading partners’ R&D capital stocks explain a 
higher proportion of the variance in TF’P than those based on bilateral import shares. The 
estimated elasticities on foreign R&D capital, however, seem implausibly high compared with the 
estimated elasticities on domestic R&D capital, especially in equation (lii). Regressions (lii), 
(2ii), and, to a lesser extent, (3ii) are very similar to those reported by Keller (1998),* which are 
the basis for his conclusion that “random” import shares perform better than true bilateral import 
shares. 

The regression results reported in Table 2 for the random division, random sequential, and 
random sampling weights refer to the average of the estimated coefficients and of the estimated. 
standard deviations (in parentheses) from the 100,000 replications of the regressions correspond- 
ing to the 100,000 sets of random shares discussed in the previous section.g This is similar to the 
procedure used by Keller. Compared with the regressions based on bilateral import shares (or 
average shares), the three sets of regressions based on random shares uniformly have higher 
standard errors (except for equation (2iii)) and lower R’s. The estimated coefficients on the 
domestic R&D capital stock in the random regressions tend to be much larger. The most 
important difference, however, is that the estimated coefficients on the foreign R&D capital stock 
become extremely small, both absolutely and relative to their estimated standard errors. In these 
random share regressions, all of the effects of R&D capital on TFP are attributed to the domestic 
R&D capital stock, with little or no role for foreign R&D capital, that is, there are no interna- 
tional R&D spillovers. 

IV. CONCLUSIONS 

Our conclusions are straightforward. Randomly created trade patterns do not give rise to 
positive international R&D spillovers. Moreover, there is no evidence that randomly created 
trade patterns do a better job of explaining total factor productivity developments than the 
bilateral import shares used by Coe and Helpman (1995). Indeed, they do worse. We show that 
Keller (1998) has reached the opposite conclusions because his “random” shares were not 
random at all, but were essentially simple averages with a random error. 

As noted, regressions using a measure of foreign R&D capital based on bilateral import weights 
or on a simple average (or Keller’s “random” shares) tend to be quite similar. This result may 
reflect relatively high correlations among the measures of domestic-and, hence, foreign-R&D 
capital stocks (see CH, Figure 2 and Table A3), or the relatively aggregate level of the data.” 
Both CH and CHE-I address this issue: CH (p. 884) note that they constructed a measure of 
foreign R&D capital based on a simple average but did not report regression results using this 

*Keller’s third set of regressions is based on equation (3’) rather than equation (3). 

‘As in CH, the random shares change from year to year, i.e., replications are done for each 
year. 

“A foreign R&D capital stock computed as the sum or average of other countries’ domestic 
R&D capital can be thought of as a measure of the world R&D capital stock, which would 
differ between countries only because of the exclusion of their own domestic R&D capital. 



- 14- 

measure since the bilateral import weighted stocks were preferable on theoretical grounds; and 
CHH report results based on a simple average (CHH, equation (iv) of Table 3), noting that the 
definition of foreign R&D capital using bilateral import weights performs somewhat better than a 
definition using weights common to each country (p. 145). 

The empirical result that a measure of foreign R & D capital based on either bilateral import 
weights or on a simple average performs better than random weights suggests that a country’s 
total factor productivity is related to its trading partners level of technological development. The 
intensity of the trade relationship, however, may not be crucial because of the public good nature 
of knowledge. 

The issue of how R&D spillovers occur through trade is a fruitful area for further research, 
particularly with less aggregate data than used here. Connolly (1998), for example, presents 
evidence that high-technology imports positively affect both domestic imitation and innovation, 
based on patent data for 40 countries. Similarly, Eaton and Kortum (1996) also using patent 
data, find that technology di&sion between countries falls as the distance between them grows. 
From the perspective of a gravity model, this would suggest a positive relationship between trade 
and technology diffusion, although Eaton and Kortum find that the effect of distance dominates 
the effect of imports, a result they describe as “somewhat surprising.” Finally, Coe, Helpman, 
and Hoffmaister (199-7, Table 3) present estimation results showing that, while bilateral import 
weights do only a slightly better job of explaining productivity growth than a simple average (R’ 
of 0.18 compared with 0.17), bilateral import weights based on imports of machinery and 
equipment (rather than on total imports of goods and services) perform much better (R2 of 0.23). 
As CHH note, using imports of machinery and equipment rather than total imports is more 
consistent with the underlying theoretical model. The fact that it also performs better is evidence 
in favor of the hypothesis that R&D spillovers are transmitted through bilateral trading relation- 
ships. 
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STATISTICAL DISTRIBUTION OF ALTERNATIVE SEIARES 

A. Keller’s Shares 

We start with the statistical distribution of the “random” shares proposed by Keller (1998) for the 
simplified case of two trading partners (n=2). This case illustrates how the transformation implicit 
in Keller’s equation (3.1) modifies the distribution of the uniform random variables that were 
used to generate the shares, and in doing so alters the nature of the weighted average based on 
these weights. 

For n=2, Keller’s equation (3.1) defines the transformation of two independent random variables 
that are distributed uniformly over the interval 0 to 1. The (joint) distribution of these two 
uniform variables is 

f x1,x2 = ~(0,1)64 x I(O,l)(X2), 

where I(a,b)( z > is the indicator function that takes the value of one when a< z I b and zero 
otherwise. The shares of interest are defined as 

w1 = x1/(x1+x2) 
w, = x2/(x1+x2). 

These shares, however, are linearly dependent since by definition w, = (1 - w,), so the joint 
distribution of wr and w, is ill defined. 

To overcome this problem, replace w, with a new variable, w,, defined as the sum of the uniform 
variables, giving the following system of equations: 

w, = x1+x2 
WI = Xl/WO. 

The problem is to determine the (marginal) distribution of wr (Keller’s shares) when x1 and x2 are 
uniform.‘r We do this by first deriving the joint distribution of w, and w,, and then obtain the 
marginal distribution of wr by integrating out wo. 

Joint distribution. For continuous variables, the distribution of w. and wr is determined by the 
expression 

f wo,wl = IJI x fx,,x2cz( xl=&-l{woY,L x,=g,‘~wo,w,~ 1, 

“Analyzing wr does not involve any loss in generality since w2 is generated identically to w,. 
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where / JI is the (absolute value of the) determinant of the Jacobean of the inverse transformation 
that is denoted by the functions g,-l{ w,, w,} and g,-‘{ wo, w,} . l2 The inverse transformations are 
defined by the following expressions: 

x1 = WOXWl 
x2 = wox(l-WI), 

and thus I JI = wo.13 The joint distribution can be obtain by substitution 

f wo,wl = w, x I(,,J>(W,XW,) x I(,,,>(woww,N. 

Marginal distribution. As noted above, the (marginal) distribution of wi is obtained by 
integrating out wo. This integration is simplified by determining the area over which the joint 
distribution is non-zero and limiting the integration to these points. For the joint distribution to be 
non-zero, both indicator variables must be one, which occurs when the following conditions are 
met: ( i) 0s W,XW,I 1, and (ii) 0 I w,x(l-w,) 5 1. These inequalities determine the four 
conditions (woz 0, w, I l/w,, w,> 0, and w, I 1/(1-w,)) that must hold for the joint distribution 
to be nonzero; these conditions are depicted by the shaded area of Figure 5, top left panell 

Using these conditions, the joint distribution can be expressed as 

f WO,Wl = Wo x [ 1]0,1/2) (Wl) x ~(o,l/wl,(wo) + 41/2,1[~~~~~~(0,1,(~-w1))~~0~ I> 

which represents the nonzero part of the joint distribution. Therefore, the integration with 
respect to w. can be expressed as 

1/(1-w,) l/w, 

fwl = 1 wo x ~]0,1,2)(wl) ho + / w. x 1(l,2,1[w &o 
b 0 

12See, for example, Mood, Graybill, and Boes (1963, p. 205) and DeGroot (1975, p. 134). 
This expression follows from the change of variables theorem in integrals; see, for example, 
Marsden and Hoffman (1993). 

13The Jacobean of the inverse transformation, J, is 

i4These conditions are valid for wr +O and w1 # 1. 
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Figure 5. Keller’s Shares 
(Two bilateral trading partners) 
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Notes: The horizontal axes in the charts show the values of w1, x1, and WI, respectively, 
starting from the upper left comer and proceding clockwise; the vertical axes show values of 
~0, x2, and fW,(wl), respectively, in the same order. 
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Performing the integration gives the following (marginal) distribution for the share: 

fwl = x x (1 - wJ2 x I]O,,,2>W + ‘/2 x (wJ2 x 4,,2,,[6%) . 

This expression is the distribution of Keller’s shares when n=2, which is depicted in Figure 5, 
bottom panel. This expression illustrates how the transformation of the uniform random 
variables used by Keller concentrates the distribution of shares around the value of l/2, that is, the 
inverse of the number of trading partners. Aside from the scale, the statistical distribution in 
Figure 5 corresponds to the empirical distribution depicted in Figure 1 for n=2. 

The intuition behind the concentration can be understood by considering the two-dimensional 
space over which the uniform variables-x, and x,-used to generate wi are defined (see 
Figure 5, upper right panel). All of the points xi, x2 that generate a specific value of the share, w,, 
lie on a ray fi-om the origin. The length of this ray is proportional to the frequency one would 
expect to observe for that specific value of wl in a random sample. For example, a ray from the 
origin passing through the coordinate x,=1, x2=% (point A) determines all possible combinations 
of xi, x2 that gives wi shares of value *%.. As the angle of the ray increases to 45 degrees (and w, 
decreases), the length of the ray increases; at 45 degrees, the ray passes through the coordinate 
x1=1, x2=1 corresponding to w,= l/2. Since this is the longest ray from the origin (in x1, x2 space), 
wr=% will be the most likely observed value in a random sample. A similar argument applies 
when rP2. For n=3, the ray is a plane, and the plane with the greatest area is the plane corre- 
sponding to wr=%; for n>4, the ray is a hyperplane, and the hyperplane with the greatest volume 
is that corresponding to wi=%; and so on. 

For general n, the joint distribution of w,, wi, ,. ., wn-i can be expressed as 

n-l 

f w0, wl, . . . . wn-1 = w. n-1 x j-J 1 
( i=l (OJ) @a x Wi)) x I(O,l) (wox{l -ij Wj}] 

where w:-l =lJl, woxwi=xj, Vi=l, 2, . . . . n-l, andw,x{ l-Zwj)=xn. As before, the marginal 
distribution of wi is obtained by (multiple) integration. Rather than attempting to do so analyti- 
tally, the results of numerical integration are depicted in Figure 1. 

As illustrated in Figure 1, the tendency for the distribution of Keller’s shares to concentrate 
around l/n remains as the number of trading partners increases. Since the shares are defined over 
the range 0 to 1, this feature of the transformation renders the distribution of these shares non- 
symmetric for n>2. More important, as n increases-and with it the degree of concentration 
around the mean-averages calculated with these weights will tend to resemble more and more 
unweighted averages with a bit of added noise. 

B. Random Division Shares 

Since the distribution of n-l ordered statistics of uniform variables is Beta (1, n-1)-see Johnson, 
Kotz, and Balakrishnan (1994, p. 280)-the first and last shares, s, and s,,, are both Beta (1, n-l) 
because si is the first-ordered statistic and s, is one minus the last-ordered statistic. Proving that 
all other shares are also Beta (1, n-l) is beyond the scope of this paper. Figure 6 shows the 
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empirical distribution of the random division shares for all trading partners when n=20 (sr , s,, . , ., 
s&. The empirical distributions appear to be identical, suggesting that the distribution of all the 
shares is the same, that is, Beta (1, n-l). 

C. Random Sequential Shares 

Each share is generated uniform conditional on the previously generated shares. Thus, the first 
share is distributed U(0, 1); the second share, conditional on the first, is distributed U(0, l-w,); 
the third share, conditional on the first two, is distributed U(0, 1-w,-w,); and so on. In general, 
the conditional distribution of the ith share is 

-1 

The joint distribution of these shares can be obtained from the product of the conditional 
marginal distributions because the conditional distribution is defined as f x/y= f x, ,, f f Y .15 The 
joint distribution is then 

f w,,wz ,... ,w"-, = $jJ, (WJ x (1 -wJ' x q,,,-wl)w2) x ..* 
x (1-w,-w,-...-wn-r) -l x ~~~,l-w,-w*-...-w,I) (wn-l> 

As before, the marginal distribution of wi is obtained by numerical integration (see Figure 3). 

“See, for example, Mood, Graybill, and Boes (1963, p. 143) and DeGroot (1975, p. 109). 
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Figure 6. Histograms of Random Division Shares, n=20 
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(s denotes the bilateral trading partner) 

s = 12 

‘“1 
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