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Summary 

The theory of purchasing power parity (PPP) states that real exchange 
rates should converge to an equilibrium level at which a unit of one 
currency should buy the same basket of goods in any country. If exchange 
rates do not converge to PPP levels, large-- and in some cases persistent-- 
swings can occur in a country's international competitiveness, and 
international comparisons of real income based on market exchange rates will 
be misleading. 

There is a very large empirical literature on tests of the PPP 
hypothesis, which on the whole finds little evidence to support it. But 
recent developments in time-series econometrics--in particular, advances in 
the methods of testing for the stationarity of variables (unit root tests)-- 
have led to a revival of interest in new empirical tests of PPP theory. 
This revival has focused largely on whether real exchange rates have unit 
roots-- that is, whether variations in real exchange rates are bounded. If 
real exchange rates can be characterized by a unit root, PPP does not hold 
because there is no propensity to revert back to any equilibrium level. 

A problem that arises with unit root tests is that they have low power 
in many cases of empirical interest, especially when shocks dissipate 
slowly. In such cases, the failure to reject unit roots cannot be construed 
as evidence against PPP, since there are insufficient data to observe that 
PPP holds even if it in fact does. This problem can be overcome by using 
additional information. In this paper, the additional information required 
to draw conclusions about the relevance of PPP is obtained by using interval 
estimators --which, unlike hypothesis tests, do provide information when a 
hypothesis is not rejected-- and by extending the analysis to cover many 
countries. 

The time-series properties of real exchange rates, on a number of 
definitions, for 22 industrial countries during 1979-95 were used to re- 
examine whether PPP holds. If real exchange rates revert to a constant mean 
slowly--say, by 5 percent a month-- then it is shown that at standard levels 
of significance one should expect 11 of the 22 series examined to yield 
evidence of mean reversion and reject unit root tests. Analysis using 
models that imply a constant unconditional mean or trend-stationary 
productivity changes finds that only 1 of the 22 real exchange rates shows 
evidence against unit roots. The lower-than-expected rate of rejection of 
unit roots in real exchange rates can be construed as evidence against PPP. 





I. Introduction 

Meese and Rogoff (1983) d emonstrated that a variety of linear structural exchange 
rate models failed to forecast more accurately than a naive random walk model for both 
real and nominal exchange rates. If the real exchange rate follows a random walk then 
innovations to the real exchange rate persist and the time series can fluctuate without 
bound. This result is contrary to the theory of Purchasing Power Parity (PPP) which at its 
most basic level states that there is an equilibrium level to which real exchange rates 
converge such that a unit of one currency should buy the same basket of goods in any 
country. 

The conclusion of Meese and Rogoff (1983) h as b een reached by numerous authors 
since the publication of their paper. Typically, this conclusion was derived by using formal 
statistical tests that failed to reject the null hypothesis of a unit root against the 
alternative of a stationary autoregressive (AR) model. An explanation of this result often 
given is that unit root tests have low power because of the relatively short sample periods 
under study. The recent empirical literature on testing the existence of PPP has developed 
in tandem with recent developments in the unit root econometrics literature.’ The 
contribution of this paper will continue this trend by showing that the latest developments 
of unit root econometrics can be used to address the low power problem. Perhaps more 
importantly, the paper will also address the problem of near unit root bias that is typically 
ignored in the empirical literature and that biases empirical results in favor of finding PPP. 

In an attempt to overcome the low power problems inherent in classical unit root 
testing procedures Schotman and van Dijk (1991) use a Bayesian analysis to examine 
whether real exchange rates contain a unit root. The results of the their Bayesian analysis 
is not without controversy. There is the question of choosing the most appropriate prior to 
use. Schotman and van Dijk use a flat prior in an attempt to obtain a degree of impartiality 
but there is still a question of whether a prior is really noninformative (Phillips, 1991). The 
introduction of impartiality properties is desirable, especially in the real exchange rate case 
where the magnitude of the autoregressive parameter is a contentious issue. However, 
classical hypothesis tests and proper Bayes estimators do not do this. 

Another problem in using the autoregressive or unit root model to analyze the 
persistence of shocks in the real exchange rates is that standard estimators, such as least 
squares, are significantly downwardly biased in models that contain constants or time 
trends, especially when the autoregressive parameter is close to but less than one. This 
bias offsets the low power properties of unit root tests. For example, in an AR(l) model 
with a coefficient equal to -95, a constant, a sample size equal to 200, and normal errors, 

‘For surveys on PPP and exhange rate economics see Dornbusch (1991), Frankel (1993), Isard (1995), 
and Taylor (1995). For surveys of recent evidence on PPP see Boucher Breuer (1994), Froot and Rogoff 
(1995), and MacDonald (1995). 
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the unit root model can be rejected if the estimated coefficient is less than -93.2 The 
median of the least squares distribution of the autoregressive coefficient is .93. Thus, in 
roughly fifty percent of cases the unit root model will be correctly rejected.3 

In the case of the real exchange rate, where the failure to reject the null hypothesis 
cannot be construed as providing evidence in favor of the null, additional information is 
required. Point and interval estimators are useful statistics for providing such information 
and will be used in this paper. In addition, we will generate a transformation from some 
initial estimator to an (asymptotically) median-unbiased estimator in order to correct the 
bias’noted above. Median unbiased estimators for autoregressive models have been 
proposed by Andrews (1993), A n d rews and Chen (1994), McDermott (1994), Rudebusch 
(1993), and Stock (1991). The type of initial estimators considered in this paper were first 
proposed by Phillips (1987u) and Perron (1988) in the context of unit root testing. These 
estimators allow for a wider class of error processes than previously considered in the 
“median-unbiased” literature. To achieve the objectives outlined above, existing results in 
the time series literature on local-to-unity asymptotics will be exploited whenever possible. 
For this purpose, the papers by Phillips (1987b) and Phillips and Perron (1988) are 
particularly pertinent. The median unbiased estimators employed in this paper are better 
suited than alternative median unbiased estimators for modelling real exchange rates. This 
is because the estimators used here are based on initial estimators that are robust to 
weakly dependant and heterogeneously distributed time series. 

Median unbiased estimates and 90% asymptotic confidence intervals of the 
autoregressive coefficient of an AR(l) model were computed using real exchange rates from 
a group of 22 industrial countries. The analysis was first conducted using an AR(l) model 
with a constant since the basic theory of PPP imposes the restriction that real exchange 
rates have a constant unconditional mean. A stationary AR(l) model with a constant is 
consistent with this restriction whereas a unit root model is not. An AR(l) model with a 
time trend was also used since the real exchange rate may move if there are differing 
productivity trends across countries. This adjusted theory is consistent with a trend 
stationary model if productivity changes are trend stationary. Since productivity changes 
move slower than changes in exchange rates, this assumption is reasonable. 

Three different measures of the real exchange rate were employed to see if the 
results were sensitive to the types of indices used. These measures where: (i) the Real 
Effective Exchange Rate (REER) b ase d on consumer prices, (ii) the REER based on 
normalized unit labor costs, and (iii) real bilateral exchange rates based on stock market 
prices. The REERs were used because they provided a reasonably comprehensive and 
comparable series based on movements in costs and prices. The real rates based on stock 
market prices were used because such prices can move as fast as nominal exchange rates. 

2The 5 percent critical value of the test statistic ‘I’(S - 1) in Fuller (1976) is -13.9. 
3A selective survey of some recent theoretical work and remaining problems of unit root econometrics 

covering the case when the autoregressive root is large but not exactly one, can be found in Stock (1995). 
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The stickiness of goods and labor market prices may generate long-term persistence in real 
exchange rates. Since equity prices are not sticky and stock market shares can and are 
traded virtually continuously, then such prices maybe more appropriate for measuring real 
exchange rates, especially when one is using high frequency data. One problem with using 
equity price data is if there are persistent divergent expectations of future returns across 
national equity markets then real exchange rates measured this way will contain a unit root 
automatically. This problem will be mitigated since financial markets have become more 
integrated over the last decade. 

Finally, having obtained the estimates of the autoregressive coefficient for the 
countries individually, the information is pooled by estimating the density of the 
autoregressive coefficient, treating each country as a single observation. If the data 
generating process for real exchange rates is common across countries then the estimated 
density of the autoregressive coefficient will provide a useful summary measure of the 
results that is easy to interpret. In a related paper, Wu (1996) uses panel-data methods to 
pool cross-country information and then tests for unit roots. However, this method is still 
subject to the median bias that favors rejecting unit roots. 

The remainder of the paper is as follows. The near unit root model and the initial 
estimators used to provide point estimates are presented in Section II, while the median 
unbiased estimators themselves are explained in Section III. The assumptions underlying 
the initial estimators are presented in an appendix. A Monte Carlo experiment is 
conducted in Section IV in order to evaluate the performance of the median unbiased 
estimator. For the reader only interested in the empirical results, these sections may be 
skipped. The empirical results are contained in Section V and the concluding remarks are 
contained in Section VI. 

II. The Near Unit Root Model 

Three regression models of the univariate time series {yt : t = 0, . . . . 2’) are 
considered in this section and are defined as follows: 

Model 1: yt = QYt-1 + ut, t = 1, . . ..T. 

Model 2: y; = aY:-1 t ut, 
Yt = p-ty;, t = 1, . . ..T. 

Model 3: yr = oyf-r + it, 
Yt = /~+@++y;, t = l,..., T. 

The assumption on the autoregressive coefficient is given below. 
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Assumption 1 
a = exp(c/T), where c is a fixed constant. (1) 

Formally, time series generated by Models 1 to 3 constitute a triangular array of the 
type (yet : 1 5 t 5 T; T 2 1) since the autoregressive coefficient depends on T. However, 
this formality is not essential and for simplicity we shall denote yTf by yt. 

We could re-write equation (1) in Assumption.1 as exp(c/T) = 1 + c/T + O(Tw2). 
In this form (1) is analogous to the Pitman drift assumption of asymptotic power studies. 
Assumption 1 allows us to utilize the local-to-unity asymptotic theory described in Phillips 
(19873). When c < 0 Models 1, 2, and 3 will be stationary. When c > 0, Models 1, 2, and 3 
exhibit explosive behavior. The case that has attracted a great deal of attention recently is 
when c = 0, the unit root case. 

We now define the estimators to be considered in this paper. Let &L+ be the 
estimator of CY for regression Model i. A suitable form of such estimators is suggested by 
Phillips (1987a) and Phillips and Perron (1988) and is given by 

ii+ = (Y:,(I - Pi)Y~l)-‘(Y~l(I - pi)Y - Tii), i = 1,2,3; (2) 

where Y = (yr , --,YT)‘, y-1 = (Y o, . . . . yT.sl)‘, Pl = 0 E RTxT, Pi = X,(X;X,)-‘X;, i = 2,3; 
x2 = (1, . . . . 1)’ E RT, X3 = (X21 x3) E RTx2, x3 = (1,2 ,..., T)‘, ii = (l/2)(5&, - s;), 
i=1,2,3. To compute the estimators &’ (i=1,2, and 3) we first need an estimator of the 
long-run variance of ut, s& and an estimator of the variance of ut, ~2. Such estimators are 
defined below 

s&, = T-’ CT,, fit” + 2 T-’ C:=, w (&) x:7+, fit&-m 
s2, = T-’ CT=, ii:, 

where &‘s are the estimated residuals from the OLS regression of Y on Y-r, or Y on 
(XdL),or Y on (X2J4, w (e) is a real-valued kernel defined below, and b is a 
bandwidth parameter. 

For the empirical application to follow, the quadratic spectral kernel will be 
employed. This kernel has the form 

w(x> = & sin(6?rx/5) 
6~x15 

- cos(6?rx/5) . 

(3) 

(4 

The prewhitening technique of Lee and Phillips (1993) is also employed to estimate 
the long-run variance s&,. The idea of using prewhitening to improve estimation of 
covariances was introduced by Andrews and Monahan (1992), who used an AR(p) model 
with fixed p to develop a prewhitened kernel estimator. Lee and Phillips (1993) modified 
the Andrews and Monahan (1992) procedure by using a data-based ARMA model to 
develop a prewhitened kernel estimator. 
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For empirical work, it is useful to have a means of choosing the bandwidth in an 
automatic way so that comparisons between different studies can be made on the basis of a 
standardized method. The operational estimator of b for the automatic selection procedure 
iS 

(5) 

where &Q) = 4/j2/(1 - fi)4, /; = fio-r/@ro-r, 0 = (&, . . . . GT)‘, 0-r = (Co, . . . . fin-I)‘, 
wg E lim,,e(l - w(x))/lxl~. The type of kernel employed determines the value of Q. For 
the quadratic spectral kernel, Q = 2. J(Q) may take several other forms depending on the 
model employed to describe the dependence in the &‘s. 

III. Median-Unbiased Estimators 

We now outline a procedure for computing an asymptotically median-unbiased 
estimator of a! that is based on the serial correlation corrected estimator &+, and for 
obtaining confidence intervals for such an estimator. Median-unbiased estimators for 
autoregressive models have been proposed by previous authors. Andrews (1993) proposed 
an exactly median-unbiased estimator with exact confidence intervals for AR( 1) models. 
This method has been extended by Andrews and Chen (1994) for the sum of the 
coefficients in AR(p) models. However, in this case the estimator is only approximately 
median-unbiased. McDermott (1994) presents median unbiased estimators and confidence 
intervals for the case when there are structural breaks in the time series. Rudebusch (1993) 
also examines median-unbiased estimators for autoregressive models using simulation 
methods. Stock (1991) considered an asymptotic confidence interval of the largest 
autoregressive root in a time series. 

The objective in this section is to produce a median-unbiased estimator (and 
confidence intervals) for the autoregressive coefficient in Models 1, 2, and 3 based on the 
local-to-unity asymptotic theory and allowing the assumptions on the error structure 
(described in the appendix) to be more general than those used in previous work. For 
example, Andrews (1993) assumes iid errors while Andrews and Chen (1994) assume 
AR(p) errors. Neither paper allows for the possibility of a MA error structure (unless 
p+coasT+oo). 

Below we discuss the asymptotically median-unbiased estimator and the asymptotic 
confidence interval. Suppose e^ is an estimator of a scalar parameter whose median function 
m(O) is uniquely defined and is strictly increasing on the parameter space 0 which is a 
finite interval. Then 4, is a median-unbiased estdmator of 8, where S, = m-l(8) and m-l(.) 
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is the inverse function of m(s) that satisfies m-l(m(8)) = 8 for 0 f 0. In addition, suppose 
6; is an estimator whose p, and p, quantiles are uniquely defined, depend asymptotically 
only on 0, and are strictly increasing in 0 on the parameter space 0. Let qP1 (0) and qP2 (0) 
denote these quan_tile_ functions, Then, an a_symptotiF lOO( 1 - p1 - pz)% confidence interval 
for 0 is given by [L, U], where L = q&l(B), U = q&l(e) and for j = 1,2, q&l(.) is the inverse 
function of qPj(.) that satisfies q;!(qPj(e)) = 8 for 0 E 0. 

Below we describe how to construct asymptotic local-to-unity central confidence- 
intervals by Monte Carlo simulation. The atymptotically median-unbiased estimator &AMU 
of cy and the central confidence interval [L, U] f or Q of asymptotic confidence level 
lOO(1 - pr - pz)% are defined by 

&A MU = 1 t CMED/T, (6) 
and 

[2,0] = [l t CL/T, 1 t w/T]. (7) 
To apply this method we first compute ai+ and then find CMED, CL and cu via the functions 
m;l(.) and q;‘(.). Th ese functions have been tabulated by simulation and are reported in 
Table 1 for c ranging from -200 to 10 and displayed in Charts 1, 2, and 3 for c ranging 
from -40 to 1O.4 The method works because the limit distributions of the estimators &I’ 
(; = 1,2,3) (given in Result 1 in the appendix) depend only on c, are increasing in c, and 
are continuous in c. This is in contrast to the limit distribution of the least squares 
estimator of cr from the Dickey-Fuller regression which also depend on all the stable roots 
in the lag polynomial that describe the short-run dynamics. Using the estimators ;Y’ 
(; = 1,2,3) avoids this problem by eliminating the nuisance parameter dependence via the 
nonparametric adjustment term 1. 

The median and quantile functions depicted in Charts 1, 2, and 3 are close to being 
strictly increasing in c although a small region where these function are not increasing can 
be detected around c = -2. The functions can be smoothed in this region such that the 
resulting functions are strictly increasing. The kink at c = 0 in Charts 2 and 3 shows that 
the quantiles of the estimators 6: (i=2,3) of cy from the autoregressive models have a 
discontinuous behavior between the stationary and nonstationary regions of the model. 
This kink is most pronounced in the model with a time trend. The extent of the bias in the 
estimator can also be observed. Consider model 3 in the unit root case (c = 0). The 
median of the estimator is -9 and the -95 quantile is less than unity. Thus the 90% central 

4The limit distribution used to construct the median and quantile functions was evaluated by Monte Carlo 
simulation for T = 100 with 1,000 replications. The simulated data was generated from the autoregressive 
model yt = cryt-1 + ~1, where c: is iid N(0, l), a = 1 + c/T and ys = cc/(1 - c~)~.~l(c < 0). J.J and j3 have 
been set to zero and u2 has been set to one since the distribution of &‘(i = 1,2,3) is invariant with respect 
to (u2,,u,p) (see Result 2 in the appendix). 
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Table 1. Quantiles of the Estimators i ’ 

a? q iq 

.05 .5 .95 .05 .5 .95 .05 .5 .95 

-200 -1.006 -.997 -.958 - ,I .006 -.997 -.956 -1.006 -.997 -.958 
-180 -.875 -.792 -.669 -.878 -.794 -.675 -.878 -.797 -.680 
-160 -.709 -.596 -.451 -.714 -.602 -.457 -.715 -.605 -.459 
-140 -.532 -.395 -.248 -.539 -.404 -.253 -.541 -.409 -.262 
-120, -.357 -, 198 -.044 -.365 -.206 -.051 -.370 -.214 -.060 
-100 -. 167 .002 .154 -* 180 -.009 .146 -. 186 -.020 .137 
-90 -.072 .lOl .250 -.080 .087 .242 -.097 .076 .228 
-80 .025 .201 .344 .015 .186 .336 -.002 .174 .323 
-60 .232 .397 .528 .214 .383 .518 .197 .369 .506 
-50 .334 .497 .618 .316 .481 .610 .298 .466 .596 
-40 .441 .596 .708 .419 .580 .700 .399 .561 .686 
-30 .553 .698 .792 .525 .678 .782 .501 .657 .773 
-20 .669 .794 .870 .638 .774 .861 .606 .753 .849 
-15 ,723 .844 .910 .701 .821 .898 .666 .799 .888 
-10 ,797 .892 .947 .758 .868 .935 .723 .845 .923 
-7 .834 .921 .968 .792 .894 .955 .748 ,871 .941 
-3 .884 ,962 .992 .835 .931 .980 .790 .901 ,963 
0 .922 .992 1.013 .865 .956 1 .ooo .801 .911 ,973 
3 .974 1.029 1.036 .931 1.024 1.033 .863 1.002 1.036 
5 1.036 1.050 1.053 1.030 1.049 1.052 .988 1.050 1.060 

10 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 1.100 

Notes: The limited distribution used to construct these quantiles were evaluated by simulation 
with 1,000 replications for the estimators 2: (i= 1,2,3). The simulated data were generated from 
the model (1-aB)yt=et, where et is iid and N(O,l), cx=l +c/T, YO=~O/l-o1~)~*~1(c<O). The 
coefficient on the deterministic regressors have been set to zero and the variance of the innovations 
has been set to 1 since the distribution of the estimators &‘f (i= 1,2,3) is invariant with respect to 
these parameters (see appendix for details). 
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confidence interval will cover the true value of unity less then 5 percent of the time suggest 
that one can make significant improvements to standard estimators of AR(l) models. 

To illustrate the use of the tables, consider the estimator &+of (Y for Model 1. If 
T = 100 and &+ = -962 then Table 1 yields CMED = -3, CL = -7 and q~ = 2 s 3. Hence 
AAMU = -97 and a 90% confidence interval [& 81 = [.93,1- 0231. Since the grid of c values 
given in Table 1 is finite, interpolation between values will often be required or one could 
compute by simulation the functions m;l(.) and q;‘( .) for as fine a grid as required. 

IV. Monte Carlo Analysis 

In this section the finite sample properties of the estimators defined in (2) are 
examined. The generating process employed in this analysis is the nearly-integrated 
moving average model, 

(1 - cYB)yt = (1 - 6B)et, (8) 
where cy = 1 + c/T and B is the backshift operator. We will examine (8) using the 
following parameter values: c = (2,0, -2, -5, -10) and 8 = (.5,0, - - 5). When conducting 
the simulation the first distribution for et considered was the standard normal N(O,l). 
Given that the quantile functions where derived using the standard normal, this 
distribution should give the best results. To analyze the robustness of the procedure to 
non-normality of the innovations four other distributions where considered: the Student’s t 
with 3 degrees of freedom, Chi-squared with 4 degrees of freedom (shifted to have zero 
mean), Rademacher (fl with probability a5 each), and Cauchy. These distributions exhibit 
thick tails, skewness, discreteness, and extremely thick tails, respectively. 

The results of the Monte Carlo analysis are reported in Table 2. The entries in this 
table are the fraction of times that the computed 90% confidence intervals contain the true 
value of cy for the different experiments and thus the expected value of each entry is -9. 

The sample coverage probabilities are close to their theoretical value of -9 except 
when 8 = -5. Thus we conclude that the asymptotic approximations perform well, except 
in the case when the moving average polynomial 8(B) = (1 - 6B) nearly cancels the 
autoregressive polynomial o(B) = (1 - c&), and even then, the higher the value of (Y the 
closer the sample coverage probabilities are to -9. 

In this problematic case, the estimated confidence intervals tend to lie to the left of 
the true cr. Producing confidence intervals to the left of the true value of Q when 8 is near 
cy is not a serious problem for most purposes. For the AR(oo) representation of (a), which 
is (1 - Cgr B’-l(a! - 8)‘B’)yt = et, coefficients for lags greater than one will be close to 
zero (for example, when cy = -9 and 8 = -5 the coefficient on the second lag of the AR( 00) 
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Table 2. Monte Carlo Results for Finite Sample Coverage 
Probabilities for Local-to-Unity 90 Percent Asymptotic 

Confidence Intervals 

Distribution 
of Errors 

Simulations for model with: 
no constant constant time trend 

a! 8 9 e 
.o.o 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 

Standard 
normal 

Student’s t 
with 3 df 

Chi-squared 
with 4 df 

Rademacher 

Cauchy 

.90 .877 .205 .852 .878 .i71 .880 .882 .128 .900 

.95 .883 .394 .921 .881 .322 .926 .869 .206 .932 

.98 .899 .678 .923 .891 .505 .925 .880 .296 .926 
1.00 .892 .735 .894 .896 .559 .812 .877 .324 .906 
1.02 .892 .816 .895 .899 .755 .908 .813 .331 ,864 

.90 .883 .185 .863 .892 .159 .882 .901 .118 .910 

.95 .934 .484 .955 .919 .378 .882 .916 .247 .949 

.98 .941 .756 .946 .902 ,544 .940 .883 * 304 .911 
1.00 .897 .735 .895 .893 .572 .918 .885 .318 .910 
1.02 -940 .853 .950 .929 .782 .943 .882 .385 .919 

.90 .881 .198 .852 .898 .157 .888 .896 .119 .910 

.95 .930 .498 .953 .925 .385 .943 .915 .246 .950 

.98 .935 .765 .946 .908 554 .924 .878 .304 .910 
1.00 .882 .724 .889 .890 .544 .903 .891 .310 .914 
1.02 .934 .852 .943 .939 .785 .964 .871 .385 .907 

.90 .873 .213 .850 .882 .161 .882 .889 .122 .909 

.95 .935 .533 .956 .915 .414 .936 .912 .260 .948 

.98 .955 .809 .952 .902 .597 .913 .879 .310 .906 
1.00 .892 .735 .895 ;898 .554 .907 .881 .322 .912 
1.02 .939 .853 .942 .939 .789 .952 .873 .382 .914 

.90 .936 .126 .910 .946 .089 .925 .938 .073 .932 

.95 .955 .473 .962 .951 .277 .956 .934 .193 .943 

.98 .948 .730 .948 .935 .504 .929 .898 .311 ,903 
1.00 .914 .788 .902 .900 ,643 .891 .905 .346 .909 
1.02 .933 .854 .933 .955 .835 .951 .915 .448 .923 

Note: The Monte Carlo simulation was conducted for T= 100 with 5,000 replications for the estimators 
8 T (i= 1,2,3), using the quantile functions q 05(8 T) and q 95(GT) reported in Table 1. The entries are 
the fraction of times that the computed 90% confidence interval contains the true value of (Y. The 
simulated data were generated from the model (1 -<.uB)y, = (1-8B)+ where 
a = 1 + c/T and y. = ~o/(l-012)o*51(c<O). 
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model is *OS). Thus, (8) is equally well represented as an AR(l) model with a lower 
autoregressive coefficient than in the ARMA( 1,l) model. For example, when a = -9 and 
0 = -5 the model yt = .4yi-r + it will generate similar forecasts. While we will 
underestimate the persistence of a particular shock when using the AR(l) model, the 
average contribution of each shock to the long-term path of gt is small. 

Qualitatively similar results were obtained using the four distributions, Student’s t 
with 3 degrees of freedom, Chi-squared with 4 degrees of freedom (shifted to have zero 
mean), Rademacher (fl with probability -5 each), and Cauchy; suggesting that the 
procedure is robust to the non-normality of the innovation process. 

V. Empirical Results 

In this section we will investigate the time series properties of the real exchange rate 
for 22 industrial countries. PPP theory holds that there is an equilibrium level to which 
real exchange rates converge such that a unit of one currency should buy the same basket 
of goods in any country. By examining the time series properties of real exchange rates we 
can determine whether real exchange rates do converge in the long-run, even at a relatively 
slow speed of say 5 percent a month, and thus determine whether PPP is consistent with 
the data. 

In this paper, the long run is taken to be the length required to reject the unit root 
hypothesis if a stationary alternative is true. Suppose that the speed of adjustment is 5 
percent per month then the required length of time is 24 years5 Using only a single 
exchange rate one would not expect to reject the unit root model with a sample of less 
than 24 years. However, in a sample of 20 or so countries with at least 15 years of data we 
would expect approximately half of them to reject the unit root model if the speed of 
adjustment were as low as 5 percent per month. 

The data used to estimate the near unit root model are monthly time series of the 
real exchange rate obtained from the International Financial Statistics (IFS) over the 
sample 1979:l to 1995:6, which gives a total of 198 observations. Three definitions of the 
real exchange rate are considered: (i) the REER b ase on consumer prices (line ret) for d 
which 22 industrial countries where selected,‘j (ii) the REER based on normalized unit 
labor costs (line reu) for which 17 industrial countries where selected,7 and (iii) real 

5The 10 percent critical value is -11.1. Thus if the speed of adjustment is 5 percent per month (or 54 
percent per year) then the required time is T = 11 . l/ (1 - ~54) which equals 24 years. 

6The countries and IFS line numbers are: United States (ill), Canada (156), Australia (193), Japan 
(158), New Zealand (196), Austria (122), Belgium (124), Denmark (128), Finland (172), France (132), 
Germany (134), Greece (174), Iceland (176), Ireland (178), Italy (136), Netherlands (138), Norway (142), 
Portugal (182), Spain (184), Sweden (144), Switerland (146), and United Kingdom (112). For a detailed 
explanation of how the REER is constructed see pages 60 and 61 in recent editions of the IFS. 

7The countries are the same as above excluding Australia, New Zealand, Greece, Iceland, and Portugal. 
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bilateral exchange rates based on stock market prices for which 18 countries where 
selected.8 All variables are transformed to natural logarithms. 

Chart 4 shows the Japanese real exchange rate for each of the three definitions 
considered. The different measures of the real exchange rate are highly correlated showing 
common turning point and the general appreciation of the exchange rate through-out the 
1980’s,that would be typical of a process with a unit root. 

We now describe the results of the near unit root estimation for the REER series 
which are reported in Tables 3 and 4. Table 3 contains the results for when a constant was 
used in the model while Table 4 contains the results for when a constant and a time trend 
was used in the model. In all cases except one (Norway), the 90% confidence interval of the 
autoregressive coefficient encompassed unity. In many cases the median unbiased point 
estimate indicated a moderately explosive model. The real effective exchange rate for 
Norway provided the lowest point estimate in both the model with a constant (-939) and 
the model with a time trend (-951). 

In order to summarize the results of the near unit root estimation, a density 
estimator for the autoregressive parameter is computed using both the initial estimator 6+ 
and the asymptotic median unbiased estimator GAMY. The procedure involves taking the 
estimated autoregressive parameter from the sample of industrial countries and forming a 
density plot.g The results of the density estimation are presented in Charts 5 through 8. 
Examining these charts we see that the estimated densities of the autoregressive parameter 
using the initial estimator 6+ is heavily skewed with long left tails making the 
determination of whether the REER contains a unit root difficult. However, the estimated 
density using the median unbiased estimator GAMU is virtually symmetric around a value 
slightly larger than unity. The density computed from the REER data based on labor costs 
has longer left tails than those based on consumer prices but there is still insufficient 
information to dismiss the unit root model. For example, if one expected the speed of 
adjustment of the real exchange rate to a long-run equilibrium to be five percent a month 
then we would have expected that about 11 of the countries (50 percent of the sample) to 
produce estimated autoregressive parameters (from the model with a constant) to be less 
than -93 (the critical value for the test of a unit root), whereas no point estimate was less 
than this critical value and only one point estimate even came close. 

sFor ease of comparison the bilateral exchange rates (U.S. dollars per unit of national curriencies) wss 
used in an index form on the basis of 1990=100 (line ahz). The real exchange rates were constructed as 
2= e - p + p*, where e is the log nominal exchange rate, p and p’ are the logarithms of U.S. price index 
and the foreign price index (line 62). The countries are the same as in case (i) excluding Greece, Iceland, 
and Portugal. Austria, France, and Italy have restricted samples due to the unavailabilty of current equity 
price data. The Austrian sample ends 1995:4; the French,sample ends 1993:12; and the Italian sample ends 
1995:5. 

91n order to present the results in a clear manner the estimated densities have been smoothed using the 
kernel method with a Gaussian kernel of the form W(Z) = -&e-(1/a)+‘. For details on density estimation 
see Silverman (1986). 
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Table 3. Median-Unbiased Estimation and 90 Percent Confidence 
Interval of (Y for Real Effective Exchange Rate Series 

(Using a constant in the model) 

Country 

REER based on 
Normalized Unit 

Consumer Prices Labor Costs 
a+ (YAMU [ crLy ?I ] a-+ QAMU 1 QfLY Qfyu 1 

United States .989 1.007 [.992,1.021] 
Canada .996 1.009 [.997,1.022] 
Australia .979 1.005 [.984,1.020] 
Japan .995 1.009 [.996,1.022] 
New Zealand .929 .984 [.946,1.015] 
Austria .995 1.009 [.996,1.022] 
Belgium .963 1.002 [.971,1.018] 
Denmark .968 1.003 [.975,1.019] 
Finland .979 1.005 [.984,1.020] 
France .957 1 .ooo [.967,1.018] 
Germany .962 1 .OOl [.971,1.018] 
Greece .955 .999 [.964,1.018] 
Iceland .918 .978 [.938,1.012] 
Ireland .940 .990 [.953,1.016] 
Italy .987 1.007 [.990,1.021] 
Netherlands .941 .991 [.954,1.016] 
Norway .951 .997 [.962,1.071] 
Portugal .988 1.007 [.991,1.021] 
Spain .983 1.006 [.987,1.020] 
Sweden .968 1.003 [.975,1.019] 
Switzerland .969 1.003 [.976,1.019] 
United Kingdom .947 .995 [.959,1.017] 

.993 1.008 

.919 .978 
**. . . . 

.998 1.009 
a.. . . . 

.983 1.006 

.971 1.003 

.995 1.009 

.988 1.007 

.934 .987 
1.004 1.010 

. . . 

. . . . . . 
1.001 1 .OlO 

.991 1.008 

.955 .999 

.848 .939 
*.. . . . 

.974 1.004 

.972 1.004 

.966 1.002 

.933 .986 

[.995,1.022] 
[.939,1.012] 

1 
i.999: 1.0221 
[ . . . ) . . . 1 
[.987,1.021] 
[.977,1.019] 
[.996,1.022] 
[.991,1.021] 
[.949,1.015] 

[1.002,1.023] 
1 . . . ) . . . 1 
[ . . . ) . . . 1 

[1.000,1.022] 
[.994,1.021] 
[.964,1.018] 
[.891, .992] 
1 . . . , . . . 1 
[.980,1.020] 
[.979,1.019] 
[.974,1,019] 
[.948,1.015] 

Data source: International Financial Statistics. 
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Table 4. Median-Unbiased Estimation and 90 Percent Confidence 
Interval of (Y for Real Effective Exchange Rate Series 

(Using a constant and time trend in the model) 

Country 

REER based on 
Normalized Unit 

Consumer Prices Labor Gosts 
cY+ amu c q&Y ‘;yu 1 a+ aAMU 1 ‘yL3 au 1 

United States .974 
Canada .987 
Australia .941 
Japan .932 
New Zealand .926 
Austria .925 
Belgium .968 
Denmark .940 
Finland .979 
France ,952 
Germany .963 
Greece .957 
Iceland .903 
Ireland -930 
IdY ,994 
Netherlands .944 
Norway .946 
Portugal .965 
Spain ,975 
Sweden ,968 
Switzerland .911 
United Kingdom .920 

1.010 [1.000,1.024] 
1.013 [1.003,1.025] 
1.005 [ .965,1.022] 
1.004 [ .957,1.021] 
1.003 [ .952,1.020] 
1.002 [ .951,1.020] 
1.009 [ .992,1.024] 
1.005 [ .964,1.021] 
1.011 [1.001,1.025] 
1.007 [ .975,1.022] 
1.009 [ .984,1.023] 
1.008 [ .980,1.023] 
.988 [ .935,1.018] 

1.003 [ .955,1.021] 
1.014 [1.005,1.027] 
1.006 [ .967,1.022] 
1.006 [ .969,1.022] 
1.009 [ .989,1.023] 
1.011 [1.000,1.024] 
1.003 [ .975,1.019] 
1 .ooo [ .941,1.019] 
1 .OOl [ .947,1.020] 

.969 1.010 

.921 1.002 
. . . . . . 

.932 1.003 
. . . . . . 

.937 1.004 

.977 1.011 

.941 1.005 

.972 1.010 

.884 .973 

.946 1.006 

. . . a.. 
.913 1.000 
,986 1.013 
.961 1.008 
.848 .951 

. . . . . . 
.974 1.011 
.962 1.009 
.951 1.007 
.900 .984 

[ .995,1.024] 
[ .948,1.020] 
[ . . . , . . . 1 
[ .957,1.021] 

: .96;:1.021; 
[1.001,1.024] 
[ .965,1.022] 
[ .999,1.024] 
[ .922,1.017J 
[ ‘.969,1.022] 
[ . . . . ..* 1 
1 . . . . ..I 1 
[ .942,1.019] 
[1.003,1.025] 
[ .983,1.023] 
[ .898,1.012] 
[ . . . , . . . 
[1.000,1.02~ 
[ .984,1.023] 
[ .974,1,022] 
[ .933,1.018] 

Data source: International Financial Statistics. 



- 14 - 

We now describe the results for the of the near unit root estimation for real 
exchange rate series based on equity prices which are reported in Table 5. Evidence from 
the bilateral exchange rate series suggest the existence of a unit root. Japan and Spain 
even display explosive behavior with the lower 5 percent quantile being in excess of one. 
The explosive behavior in Japan in due to the sharp increases in assets prices in the late 
1980’s in contrast to the generally stable prices of goods and services. 

Again to summarize the results of the near unit root estimation, a density 
estimator for the autoregressive parameter is computed. The result of the density 
estimation are presented in Charts 9 and 10. Examining these two charts. we can observe 
that estimated densities of the autoregressive parameter using the initial estimator Zi+ on 
Models 2 and 3 are heavily skewed and the proportion of point estimators at or above 
unity is 0 percent using both Models 2 and 3. The density estimation based on the median 
unbiased estimator 6.4~~ is again symmetric at or slightly above unity with approximately 
70 percent of Model 2 and 80 percent of Model 3 point estimates being at or above unity. 

Overall the evidence against the unit root hypothesis is very weak and inconsistent 
with any stationary alternative that holds any economic meaning. To understand the 
difference between the unit root model and a stationary AR model with a high degree of 
correlation, simulated density estimates for a unit root process and a stationary AR 
process were generated using standard normal errors, a time length of 200 observations and 
22 “country” observations. The estimated densities from the simulated data are shown in 
Charts 11 and 12. In the unit root case, the mode and the median of the simulated density 
estimate (based on a median unbiased estimator) lies at unity but the density is more 
dispersed and skewed than the density produced using actual real exchange rate data. In 
the stationary case, the simulated density estimate is even more dispersed but symmetric 
around its true value of .95, as would be predicted by standard asymptotic theory for 
stationary time series. 

VI. Conclusion 

This paper has re-examined whether PPP holds in the long-run by investigating the 
time series properties of the real exchange rate for 22 industrial countries. PPP theory 
holds that there is an equilibrium level to which real exchange rates converge such that a 
unit of one currency should buy the same basket of goods in any country. By examining 
the time series properties of real exchange rates we can determine whether real exchange 
rates do converge in the long-run, even at a relatively slow speed of say 5 percent a month. 

Since only Norway’s real exchange rate produced a 90 percent confidence interval 
that did not include unity we can conclude that overall the unit root model gives the best 
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Table 5. Median-Unbiased Estimation and 90 Percent Confidence 
Interval of a, for Equity Price based Real Exchange Rate Series 

constant in model time trend in model 
country1 

Canada 
Australia 
Japan 
New Zealand 
Austria 
Belgium 
Denmark 
Finland 
France 
Germany 
Ireland 
Italy 
Netherlands 
Norway 
Spain 
Sweden 
Switzerland 
United Kingdom 

a!+ aAMU [ qy qJ 1 a+ aAMU [ q9 ‘yu 1 

.999 1.010 [.99?,1.022] .881 .972 

.968 1.003 [.975,1.019] .905 .991 

.984 1.006 [.988,1.021] .982 I.012 

.963 1.002 [.971,1.018] .953 1.007 

.976 1.005 [.982,1.020] .968 1 .OlO 

.969 1.003 [.976,1.019] .969 1 .OlO 

.940 .990 [.953,1.016] .924 1.021 

.981 1.006 [.986,1.020] .973 1.010 

.977 1.005 [.981,1.022] .966 1.010 

.938 .989 [.952,1.016] .939 1.005 

.970 1.003 [.977,1.019] .969 1.010 

.968 1.003 [.975,1.019] .969 1.010 

.917 .977 [.937,1.012] .904 .989 

.944 .993 [.956,1.016] .884 .973 

.986 1.007 [.989,1.021] .984 1.012 

.979 1.005 [.984,1.020] .969 1.010 

.968 1.003 [.975,1.019] .959 1.008 

.935 .988 [.950,1.016] .935 1.004 

[ .920,1.017) 
[ .936,1.019] 
[1.002,1.025] 
[ .976,1.022] 
[ .992,1.024] 
[ .993,1.024] 
[ .950,1.020] 
[ .999,1.024] 
[ .988,1.026] 
[ .963,1.021] 
[ .995,1.024] 
[ .993,1.024] 
[ .936,1.019] 
[ .922,1.017] 
[1.003,1.025] 
[ .993,1.024] 
[ .981,1.023] 
[ .960,1.021] 

Data source: International Financial Statistics, 

‘The bilateral exchange rates (U.S. dollars per unit of national curriencies) were used in an index form 
on the basis of 1990= 100. The real exchange rates were constructed as x = e - p + p*, where e is the 
log nominal exchange rate, p and p* are the logarithms of U.S. price index and the foreign price index. 
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description of real exchange rates in industrial countries. This conclusion was reached using 
econometric methods that correct for the bias present in typical AR model estimators 
(such as least squares and the Phillips-Perron estimator) and that combine country 
information on the time series properties of real exchange rates in a graphical manner. 

The finding that real exchange rate movements do not conform to PPP has several 
implications. First, the purchasing power of a given income in one country and currency 
cannot be easily compared. When actual exchange rates are used to make such 
comparisons the real income of countries will be biased. Second, deviations from PPP 
imply informational inefficiency in the sense that rational investors, using available 
information, could make excess profits by borrowing in one country, and buying and 
holding stocks in a another. Third, persistent deviations from PPP imply persistent swings 
in a country’s competitiveness. These deviations in competitiveness can yield large 
deviations in a country’s external balance, output, and employment. 
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Appendix: The Econometric Assumptions 

The following assumption is sufficient for a functional central limit theorem to be 
applied to partial sums of ut and u: and has been employed in many papers for such a 
purpose. For examples and further discussion see Phillips (1987u, b), Phillips and Perron 
(1988) and Perron (1988). 

Assumption 2 (u) E(ut) = 0 for all t; 
(8) supt EJu,[P+~ < 00 for some p > 2 and e > 0; 
(c) w2 = limT,, E( TV’S;) exists and u2 > 0, where St = CL=, uk; 
(d) {ut} is strong mixing with mixing coeficients Q, that satisfy Czz1 cyi21p < 00. 

If {ut} is weakly stationary with spectral density f,,(X), then the long-run variance 
of ut is 

O2 = 2 E(UoUj) = 2n fu(O) > 0. (9) 
j=-00 

The standard variance of ‘~lt is 

at = $im T-l fj E(uf). 
kl 

(10) 

For the sequence of partial sums {St : St = C:=, uk}, we construct 

X*(r) = T-‘kJ-1 spy 
= T-‘f’w-‘sj-l, ~ I r < ~ (j = 1, . . ..T) ‘(11) 

where [Tr] denotes the integer part of Tr. We also denote by D[O, I] the space of cadlag 
functions,” endowed with the uniform metric llf - gjl = supr If(r) - g(r)1 for any 
f,s E owl. x T r ( ) is a random element in the function space D[O, l] and obeys a 
functional central limit theorem or invariance principle often expressed by the notation 
XT(~) =+ W(r). The symbol ‘=R’ signifies weak convergence of the associated probability 
measures as T + 00, and the limit process W(r) is standard Brownian motion on CIO, 11.” 
When c is close to zero and thus Q is local-to-unity, we can use a functional cent& Zimit 
theorem in which XT(T) converges weakly to a diffusion process J,(r) as T + 00, where 

J,(r) = 1 et’-“)‘dW( s). (12) 

We now give the assumption on the types of kernels w(.) and bandwidth parameter 
b required for estimation. 

“‘cadlag functions are real-valued functions on [O,l] that are right continuous at each point of [O,l) with 
left limits existing at each point of (O,l]. For a detailed discussion of D[O, l] see Pollard(1984). 

“C[O, l] is the space of real-valued continuous functions on [O,l]. 
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Assumption 3 : (a) The kernel function w(.) : R + [-1, l] satisfies the following 
conditions: (i) w(0) = 1, (ii) W(X) = w(--2) Vx E R, (iii) ST”, Iw(x)ldx < co, and (b) 
w(.) is continuous at zero and at all but a finite number of other points, 

(b) The bandwidth parameter satisfies the condition b + 00 as T + oo such that 
b = 0(2”/~). 

Assumption 3.describes a class of kernels that can be considered. This class 
includes the Bartlett, Parzen, Tukey-Hanning and quadratic spectral kernels. Examples of’ 
suitable kernels can be found in Priestley (1981) and Andrews (1991). Assumptions 2 and 
3 ensure the consistency of the estimator S& (see proof of Result 1). Andrews (1991) 
provides more primitive conditions for consistency of s& and also shows that the 
conditions on the bandwidth parameter could be relaxed so that b = o(T). 

Andrews (1991) h s ows that under more stringent primitive conditions than in 
Assumption 3, s& is consistent when the bandwidth parameter b is chosen by an automatic 
“plug-in” selection procedure. The assumption required when b is chosen by the data 
dependent method of Andrews (1991) is given below. 

Assumption 4 : (a) The kernelfunction w(.) : R 3 [-1, l] satisfies the conditions of 
Assumptions S(u) and (i) w(x) < C’~IX~-~ j or some B > 1 + 1 /q and some Cl < 00, where 
q E (0,oo) such that wp E (0, w), and (ii) [w(x) - w(y)1 5 C21x - yI Vx,y E R for some 
constant Cz < 03. 

(b) h = ,@‘l/(%+l) - 1, where 4 satisfies 4 = O,(l) and l/J = O,,(l). 

We now recall a useful Lemma from Phillips (19873). 

Lemma 1 : Let Assumptions (1), (Z), and (3) hold. Then as T + 00, 
(a) T-1/2Q,j * w Jc(r); 
(b) TW3i2 CL, yt =% w 6 J,(r)dr; 
(c) Te2 ET=, yt’ + w2 st J,(r)2dr; 
(d) T-l CF=, yt-lut =+ w2 Ji Jc(r)dW(r) + (w2 - az)/2, where 

4 = limT,, T-’ CT,, IS($). J otn weak convergence of (a)-(d) also applies. ’ t 

We now recall a useful result, originally reported in Phillips (19873) and Phillips 
and Perron (1988), on local-to-unity asymptotic distributions. The result delivers a 
distribution which can be used to derive a median-unbiased estimator. Phillips (19873) 
provides results for Model 1 and Phillips and Perron (1988) extend these results to Models 
2 and 3. In this paper we make extensive use of these results and for completeness the 
proofs are also provided. 
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Result 1 : Let Assumptions (1), (2) and (3) hold. Then as T + 00, 

T(&+ _ 1) * c + si J%9d~w 
st { Jj(r)}zdr ’ 

i = 1,2,3; 

where &’ is the estimator for Model i, J:(r) = JC(r), J:(r) = JC(r) - li J,(r)dr and 
J:(r) = J,(r) - s,‘(4 - Gr)J,(r)dr - r$(12r - G)J,(r)dr. 

PROOF OF RESULT 1: Here we prove the results for Model 1 only since the results for 
Model 2 and 3 follow analogouslyjsee also Phillips and Perron (1988, Theorem 3, p.342)). 
We claim that 

s2 5 a2 u u (13) 
and 

We note that in the case i = 1 

s&) 3 w2. (14 

T(&; -cy) = (T-2YI,Y-I)-1 (T-‘Yl,Y - A, - (Y/T) 

= (T-2Y’IY-I)-1 (T-‘Y:,U - (s& - 4)/2) 
+ S J,(r)dW(r) S JC(r)2dr. 

Weak convergence follows by direct application of the continuous mapping theorem and 
Lemma 1, together with (13) and (14). 

It remains to show (13) and (14). Under Assumption 2, (13) follows by applying a 
strong law of large numbers for dependent heterogeneously distributed sequences. In 
particular, see Theorem 2.10 of McLeish (1975). To show (14) define 

&, = T-’ g E(uf) + 2 T-l 2 w (&) 5 %Wt--7). 
= 7=1 t=7+1 

(15) 

It suffices to show that sgb - a&, 3 0 and that a& - w2 3 0. Under Assumptions 2 and 3, 
4-b - &I 3 0 and a2 rb - w2 -% 0 follow from Theorem 1 (a) of Andrews (1991). Hence 
s&, 3 w2 completing the proof. 0 

We now provided an invariance result for the estimators defined in (2). Similar 
invariance results have been shown by Andrews (1993), DeJong et al. (1992), and Dickey 
and Fuller (1979). Th e invariance property of &y’ shown in Result 2 is extremely useful in 
simulating the bias correction needed for estimators of Q. 

Result 2 : The distribution of ;Yt is invariant with respect to 02, the distribution of&t is 
invariant with respect to (a2,p), and the distribution of ~5: is invariant with respect to 
(U2,P,P)* 
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PROOF OF RESULT 2: Consider Model 3. The first step is to show the distribution of &3+ 
is invariant with respect to (CL,@). Define R = Y - Xs(XiXs)-lX$Y and 
R-1 = Y -1 - Xs(XiXs)“XiY-1. Note that R and-R -1 are in invariant with respect to 
(~,/3) and thus &LS = [R’_lR-r]-lRL,R is invariant. Hence the distribution of &LS is 
invariant with respect to (II,@). Since iy$ = &~ss + [Yi,(l - P3)Y-1]-1Tj\3 = 
&y~ss = [RLIR-l]-lT&r it suffices to show that &, is invariant with respect to (CL,@). 
Recall is = 2 T-l Ci=, w (&) CT=7+1(ULS3,tZLLS3,t-7) and 6~~s = R - &LS&-~. Since G~ss 
is invariant with respect to (p,p) th en so is 1s: The second step is to show that the 
distribution of ;Y$ is invariant with respect to Q i. Divide a: by a nonzero constant d to 
obtain 

K/d = p/d + (P/t+ + Y;/d 
Y,‘/d = a(Y,*_Jd) + w/d. 

Let estimates for (16) be denoted by the superscript d. Notice that 

v-9 

&3 = l(R-l/d)‘(R-l/d)]-‘(R-l/d)‘(R/d) 
= hLS3 

4S3 = (W) - hs(R-l/d) 

= Gx3/d 

A: = 2 T-' CL w (&) CT=7+1(U~s3,*U~s~,t-+) 

= &/61. 

Hence 
&& = &is3 + [(R-l/d)‘(R-l/d)]-‘Tfi,d 

= ALSO +[(R'_,K1)/dZ]-~fi3/8 
= Gs3. 

The result follows since &is3 is invariant with respect to (p/d,P/d). The proofs for Models 
1 and 2 are analogous. 0 
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