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Pathological economic phenomena like hyperinflation or chronic 
inflation have been often attributed to nonfundamental influences, which 
implies that they are difficult to control by conventional policy 
instruments. In the literature, such influences have been given different 
names--for exemple, bubbles, sunspots, or extraneous effects--but 
essentially they all represent the honogenous component of the solution to 
an expectational equation. Hamilton and Whiteman (1985), extending the 
results by Flood and Garber (1980), have shown that the presence of 
nonfundamental influences can only be verified by analyzing the difference 
between the dynamics of the narrow money supply and the price level series, 
as reflected in their respective orders of integration. If the former is 
exogenous with respect to the latter, a nonfundamental influence can be 
assumed to exist. 

Evans (1990) criticized this approach, asserting that conventional 
tests fail to reject the hypothesis that a particular exploding bubble 
process is nonstationary. Accordingly, he concluded that the Hamilton and 
Whitman approach has limited practical application. 

This paper illustrates the reasons for Evans' results and explains how 
his critique can be overcome by using fractionally integrated processes, 
which allow greater flexibility in modelling long-cycle components of 
nonstationary time series by extending the standard time-series methodology 
to noninteger orders of integration. 

The empirical part of the paper focuses on the estimation of the 
fractional orders of integration of money supply and price level in six 
countries using an exact maximum-likelihood method devised by Sowell (1990). 
The objective was to test the hypothesis that high inflation is caused by 
self-fulfilling expectations, as reflected by a homogeneous term in the 
solution to the expectational equation. For all six countries, the presence 
of an homogeneous component is rejected. However, in a few cases there is a 
slight difference in the order of integration, which is attributed to 
protection from inflation accorded to particular groups, for example in the 
form of wage indexation. 



. 



I. Introduction 

Recent studies on inflation have focused on Cagan's equation and its 
rational expectations solution, which relates general price index movements 
to the money supply. Despite its intrinsic simplicity, this equation can 
generate a wide range of dynamics, including both stable and unstable laws 
of motion, self-fulfilling speculative price paths, "bubbles," or completely 
extraneous influences, "sunspots." 

The idea that increases in consumer price index may not reflect 
movements in fundamentals is hardly new. The idea, in nuce, was already 
contained in Cagan (1956) and the problem of the non-uniqueness of 
equilibrium in a dynamic monetary economy has surfaced since Sargent and 
Wallace (1973b). Brock (1975) undertook a comprehensive treatment of stable 
and unstable solutions in a framework of intertemporal optimization with 
real money balances in the utility function. L/ However it was the 
seminal article by Flood and Garber (1980) 2/ that renewed the interest in 
Cagan's model and made the notion of rational bubble popular, by showing how 
self-fulfilling expectations might arise in a rational expectation context 
derived as a particular case of Brock (1975). In linear dynamic models 
bubbles and other nonfundamental influences are represented by the 
homogeneous part of the solution to a linear difference equation and 
logically are not related to the way expectations are formed. What 
expectations affect is the persistence of inflation: adaptive or backward- 
looking expectations would delay the effect of any change in policy as the 
agents' reactions lag. 3J In other words bubbles and persistence are 
conceptually distinct phenomena. 

This paper will focus mainly on an empirical test of the presence of 
bubbles and sunspots based on the study of the solution to Cagan's equation 
by Hamilton and Whiteman (1985); generalizing the results by Burmeister, 
Flood and Garber (1980), they showed that bubbles, sunspots and related 
processes, are observationally equivalent to "fundamental" equilibria, once 
a fairly general dynamic specification for the driving variables has been 
postulated. Hence they concluded that the only falsifiable hypothesis 
implied by self-fulfilling expectations concerns the difference in the order 
of integration of the relevant variables. In the presence of bubbles money 
supply has a lower order of integration than the price level or, stated 
differently, changes in money supply are followed by larger movements in the 
price level. k/ 

I/ A critical review of this literature is contained in Gray (1984). 
2J Kingston (1982) proved that Cagan's equation can be derived as a 

special case of the general equilibrium model in Brock (1975). 
J/ See Sargent (1986) introduction to Chapter 3, "The end of four big 

inflations," for a lucid and concise treatment of the dichotomy between 
adaptive versus rational expectations. 

4/ Even after Hamilton and Whiteman (1985) was published the fundamental 
importance of this falsifiable hypothesis is not always perceived in the 
literature. For example, Casella (1989), in her analysis of the post World 
War I German hyperinflation, takes the second difference of the data, 
therefore assuming, without testing, that the series have the same order of 
nonstationarity. 
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Evans (1991) criticized Hamilton and Whiteman (1985), by showing in a 
Monte Carlo study, that a specific form of bubble process cannot be detected 
by conventional unit root tests. 

This paper argues that Evans' critique can be overcome by exploiting 
the properties of a recently developed time series model, the so called 
Autoregressive Fractionally Integrated Moving Average (ARFIMA). lJ These 
fractionally integrated processes, generalize the treatment of standard 
integrated processes by considering noninteger order of integration, thereby 
providing an accurate representation of time series with slowly decaying 
autocovariance structures (also called long memory structures). The 
advantages of ARFIMA models in testing for the presence of bubbles can be 
synthesized in three points. 

1. A greater degree of diagnostic precision than the standard 
stationarity tests (see also Diebold and Rudenbush (1988)) because, unlike 
ARIMA, ARFIMA do not place any restrictions on the long run characteristics 
of the series. 

2. Separate analysis of the short-term and the long-term dynamics of a 
variable, which is of extreme importance in the study of inflation. In 
fact, the long-term dynamics account for shifts in fiscal regimes, while 
short-term effects are the results of what Sargent (1986) calls limited 
actions, i.e., policy measures which do not attack the root of inflation. 

3. Extreme generality in the sense that, unlike other methods, ARFIMA- 
based tests do not require to specify the particular form of the bubble. 
With regard to Evans' critique, they can differentiate rapidly collapsing 
bubbles from noises, through a careful diagnosis of the long memory 
characteristics of the autocovariance function. 

Nonfundamental influences have been long debated in economics and have 
been brought up in several circumstances to explain anomalies in speculative 
markets or macroeconomic data. For instance, bubbles may arise when the 
current value of an asset is determined (at least in part) by the expected 
rate of market price change. The mere self-fulfilling assessment of a 
future change can drive the current value to a level unwarranted by economic 
fundamentals. 

The case of inflation is somehow analogous: inflation reflects the 
present value of expected future government deficits. Agents (firms and 
workers) base their economic decisions on these expectations, so even a 
temporary misperception can gain momentum and trigger a self-sustaining 
process of hyperinflation. For example, fearing a sudden loss of purchasing 
power, consumers would be induced to dispose of money by purchasing goods, 

lJ Two other ways to overcome this problem, were proposed by Hall and Sola 
(1993) and Blackburn and Sola (1993), who resorted to the Harkov regime- 
switching model by Hamilton (1988, 1990). 
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thereby provoking further price increases; analogously trade unions in 
collective bargaining would push for higher wages, which would be 
transferred on prices. 

The existence of bubbles or sunspots has far-reaching consequences for 
economic policy. In particular, if inflation expectations are self- 
sustaining or depend on causes beyond economic rationale, the price level 
will not respond to conventional monetary and fiscal measures. The cost of 
stabilization achieved through monetary and fiscal discipline, hence, will 
be extremely high as its pace will be very slow. 

The nature of inflationary phenomena varies with their intensity and 
duration. Cagan (1956) defined hyperinflation an increase in the price 
level in excess of 50 percent per month. In this paper attention is paid to 
cases which is more appropriate to describe as chronic high inflation. 
Hyperinflation invariably does not last too long and likely agents 
anticipate that somehow it must come to an end. Chronic high inflation on 
the contrary protracts for a long span of time, so agents try to adjust to 
it and possibly to find some form of protection. Moreover it is less likely 
to be stopped by a sudden regime shift and therefore agents' decisions are 
prompted (in absence of bubbles) by the dynamics of the driving variable. 

The thorough treatment of the topics summarized in this introduction 
is organized in five additional sections. Section II provides a brief 
outline of fractionally integrated processes. In Section III, a solution to 
Cagan's equation is formulated on the assumption that the driving variable, 
in this case money supply, is fractionally integrated. Section IV discusses 
Evans' critique, its relevance, and the reasons why ARFIMA models offer an 
appropriate response. The results of the empirical analysis for six 
countries (Bolivia, Former Socialist Federal Republic of Yugoslavia, Brazil, 
Argentina, Peru, and Chile) are given in Section V. Section VI concludes 
with a discussion on the implications for economic policy. 

II. Fractionally Integrated Processes 

Classical time series analysis is based on an extremely simplified 
view: long-run behavior and impulse response are determined by the degree 
of integration of a variable, which is assumed to be an integer number. If 
a variable X, is integrated of degree zero, in symbols Xt - I(O), its 
unconditional variance is finite and an innovation does not have a lasting 
effect, since its autocorrelation decays at an exponential rate. If 

Xt - I(l), its variance is infinite, hence an innovation has a permanent 
effect since X, is the sum of all previous innovations and its 
autocorrelation approaches unity. J.J For variables integrated of degree 

lJ Most of the research devoted to the treatment of nonstationary economic 
series has focused on cointegration. Two variables integrated of degree d 
(d being an integer) are said to be cointegrated if there exists a linear 
combination which is integrated of degree d-l. 
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two or three or more, the same reasoning applies to their first, second, 
. . . . ) n-th differences. 

However, a wider range of dynamics can be analyzed by considering 
fractional (noninteger) orders of integration, in particular, long-memory 
processes (see McLeod and Hipel (1978)) whose correlation decays at a 
geometric rate. u 

ARFIMA processes can be thought of as a natural extension of the 
standard time-series models (Granger and Joyeaux (1980) and Hosking (1981)). 
A random walk X,, i.e., an ARIMA(O,l,O), is the d-difference of a white 
noise C(t) - N(O,o*), where d - 1. In symbols 

T - (1-L) Xt - Ct 

where L is the lag operator, i.e., LX, - X,-l. Similarly an ARFIMA(0,d.O) 
process is a fractionally differenced (Gaussian) noise, defined as the d-th 
difference of a white noise, with d c (-0.5, 0.5): 

vdxt - (1-L)d Xt - Et (2.1) 

In other words, the AF@IMA(O,d,O) process is the stationary solution 
(X,9 t c (--,Q)) to the above difference equation. For a proof of the 
uniqueness of the solution when -0.5 < d < 0.5, see Brockwell and Davis 
(1987). 

1/ As observed by Granger (1966), most economic variables have a "typical 
spectral shape" dominated by low frequency components. Under these 
circumstances first-differencing the series leads to loss of useful 
information on the long-cycle properties of the data. 
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The difference operator (l-L)d can be obtained by a binomial 
expansion JJ 

(l-L)d = 
F( 1 
-, k" (-L)k P l-+-J(l-d)L'-+(l-d) (2-dL3-..., 

(2.2) 
where d > -1. Alternatively, the operator (1 - L)d for any real number 
d > -1 can be expressed as 

(l-ad = - 
F 

I-(-d+j) Lj 
-o l?(-d)lT(j+1) * 

(2.3) 
where r is the gamma function or generalized factorial. 

The fractionally differenced noise is the building block of a larger 
class of processes, the ARFIMA(p,d,q), defined as the d-th fractional 
difference of an ARMA(p,q), i.e., 

4(L) (Wdx, - w&t (2.4) 

where p and q are the order of an autoregressive component and a moving 
average component, respectively, so that d(L) and 8(L) are polynomials in 
the lag operator L, of order p and q, and -0.5 < d C 0.5. As in the case of 
the ARFIMA(O,d,O), (X,) can be interpreted as the unique stationary solution 
to (2.4), or, if one prefers, as an ARMA process driven by a fractionally 
integrated noise. 

The usual definitions of causality and invertibility typical of ARMA 
processes apply to ARFIMA: (X,) is causal if and only if Q(z) + 0 for 
IzI _< 1 and is invertible if and only if e(z) + 0 for lzj I 1. 

I-J' The binomial expansion of (a+b) n for noninteger n is an infinite series 
defined as 

(a+b)B = (‘d)an+( ;)a”-%+( ;)a-%‘+. . . . . = g( $m5* 

If a - 1 and b < 0 the above expression becomes 

(1-b)D = 1+3*(-b)'+"(;;1) .(-kP)+n(n-lp-2) *(-p)+....*... 

which is essentially 2.1 if we set b - L. 
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It is essential here to point out that when d > 10.51, the process 
(X,) is nonstationary. In other words, -0.5 and 0.5 represent the 
borderline between stationarity and nonstationarity. 

This parametrization of a time series as an ARFIMA process has two 
main advantages. On the one hand, it includes the standard ARIMA models as 
a particular case, thereby providing a direct and intuitive link to standard 
time series literature. On the other hand, it allows a more accurate 
analysis of long-run dynamics. 

Specifically in classic time series models, the AR or MA parameters 
cannot describe the long-run properties of data separately from the shorter- 
run dynamics. In contrast the parameter d of an ARFIMA process describes 
the long-run properties, while the ARMA parameters account for the short-run 
behavior. As described in more detail below, the parameter d is related to 
the low frequency component of the spectral density, and therefore, the 
degree of stationarity is directly linked to the degree of persistence of a 
series. 

An ARFIMA(p,d,q), has a long term behavior which in the limit 
approaches that of an ARFIMA(O,d,O) with the same parameter d, since the 
autoregressive and moving average parameters have only a slight and 
decreasing influence on distant observations. Indicating by k the time lag 
between observations, the autocorrelation function of an ARFIMA(O,d,O) is 

R(k) = k2d-1 IQ-d)/P(d) ask-+- 

while for an ARFIMA(p,d,q), it is 

R(k) = Ckzd-1 ask+- 

where C is some stri.ctly positive constant (see Brockwell and Davis (1987) 
for a proof). As the lag k increases the distance between the 
autocorrelation function reduces to zero. 

Because processes with a unit root are only a special case of 
nonstationary processes, ARFIMA models provide a more general alternative to 
standard Dickey-Fuller tests, whose adequacy has been questioned in several 
instances (see for example Cochrane (1991) and Campbell and Perron (1991)). 

Indeed Dickey-Fuller tests have low power when the true underlying 
process is fractionally integrated (see Diebold and Rudebush (1991)). This 
critique motivates the use of fractionally integrated models to test for the 
presence of bubbles. 

The order of integration and the other ARFIMA parameters can be 
estimated either through a two-stage procedure or through maximum 
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likelihood. In the former case, one first estimates d, then filters the 
series with the fractional version of the standard differencing procedure 
and finally uses standard techniques to estimate the ARMA parameters from 
the filtered data (see Geweke and Porter-Hudak (1983)). 

Alternatively maximum likelihood methods can be used either in 
approximate form (McLeod and Hipel (1985). Fox and Taqqu (1986)) or in exact 
form (Sowell (1992)). Sowell's exact method is used in this study. 

To conclude this section, we summarize for later reference two 
important results on the algebra of fractionally integrated series proved by 
Granger (1980b). First if a fractional difference operator of order d' is 
applied to a variable integraiyd of order d (in symbols X, - I(d)), then the 
resulting process, Yt - (1-L) Xt, is integrated of order I(d+d'). Second, 
given two processes, Xl t - I(d1) and X2 t - I(d2), their sum , , 

“t - Xl,t + X2,t 

is integrated of order max(dl,d2). Thus a fractional filter of order d' 
increases by d' the order of integration and the highest order of 
integration prevails in a sum of two integrated series. As it will be clear 
later these two properties are crucial in assessing the correctness of the 
Hamilton and Whiteman test. 

III. Cagan's Eauation with Fractionally Differenced Variables 

Cagan (1956) made an essential contribution to the analysis of 
inflationary processes by expressing the money demand as 

MtiPt - c exp(-6 s*t+ll (3.1) 

where M 5; is nominal money balances at time t, Pt is the price level at time 
t and x t+l is expected inflation at time t+l, while 6 and c are constants, 
the first reflecting the impact of expected inflation, the second 
summarizing all other effects. In Cagan's original formulation expectations 
were assumed to be adaptive, but the more recent literature is based on 
rational expectations. Let the variables in logarithms be indicated by 
lower case letters and c be normalized to 1, then expected inflation can be 
expressed as 

. _ ~[%ll%l -pt R - 
pt 

- HP,*,IQ,l -Pe I 

where E[olnt] denotes mathematical expectation conditional on the 
information set at time t, 0,. The money demand equation (3.1) can then be 
rewritten as 
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mt - pt - -6 Wpt+llQtl - Pt) (3.2) 

Adding a money demand disturbance nt, equation (3.2) can be 
equivalently expressed as 

E [PC+~ i Q,] -ap, = xc+nc 

(3.3) 
where a - (l-6)/6 and xt - mJ(l+S) - (1-a)mt. l.J Equation (3.3) can also 
be obtained as a log-linear approximation to an Overlapping Generation (OLG) 
model with money. This interpretation of (3.2), as explained in Blanchard 
and Fisher (1989) Chapter V, does not place any restriction on the 
coefficient a, which, according to Cagan's formulation, was between 0 and 1. 

It is crucial in the study of inflation, to stress that monetary 
policy cannot be isolated from fiscal policy and is ultimately a direct 
consequence of it. As explained in the next subsection this notion is 
fundamental in defining the stochastic process for money supply as a long 
memory process and in addition justifies the presumption that money is 
exogenous to prices as required by the testing procedure. 

1. Monetary policy and fiscal regime 

To get testable implications from (3.3) we need to define the 
stochastic process governing money supply and the money demand disturbance. 
Furthermore, to implement the test it is required that the driving variable 
is exogenous. A rather general specification was given by Hamilton and 
Whiteman (1985) 

(1 -L)d Xt - AU&l,, + B(L)e2,t 

(1 -L)d nt - RWqt + W)qt (3.4) 

where the white noise innovations ~i,~ i-1,2 are jointly fundamental for the 
bivariate process (xt,nt), d is fractional, and A(L), B(L), R(L) and S(L) 
are polynomial in the lag operator with mean square converging terms. One 
can think of xt as a variable observed by the econometrician, in the sense 
that time series of past realizations are available, and nt as unobservable 
by the econometrician (because no data are available), but observable by the 
agents. For example nt can be interpreted as variables other than 
fundamentals that enter agents' forecasts. The first equation in system 

lJ This form of the expectational equation has been studied in a number of 
papers and in different contexts, for example, asset pricing and exchange 
rate theory. 
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(3.4)s often called a feedback rule, models a rather broad class of monetary 
policies (see Sargent (1987), Chapter 17). For example, when A(L) - 1, 
B(L) -0, andd- 1 the monetary rule is a random walk. In general it 
asserts that the monetary authority reacts to unexpected shocks in the 
economy, described by the disturbances et, by choosing A(L) and B(L). This 
choice depends on the objective function of the monetary authority. L/ 

In case of chronic high inflation or hyperinflation monetary policy is 
unlikely to be directed at stabilizing output growth, rather it is dictated 
by the need to finance budget deficits, Let's assume that the government 
budget constraint is represented by 

Gt + (1 + rt-l)Bt-1 - Tt - (Mt - Mt-l)/Pt + Rt (3.5) 

The identity (3.5) asserts that the difference between total 
government spending (the sum of real expenditures G, and interest payments 
(l+rt-l)Bt-1) and revenues T, is covered by money printing M, - M,-1 (which 
extracts a seignorage equal to (Mt - Mt-l)/Pt) or by issuing bonds Bt 
bearing a real interest rate rt. 

A major implication of (3.5) is that inflation and fiscal deficit are 
not necessarily temporally related because governments can resort to 
borrowing. So if a government follows a Ricardian Rule, i.e., is committed 
to finance its debt exclusively by issuing bonds, M, - M,-1 - 0, deficits 
are not inflationary, as far as the commitment is credible, i.e., if the 
future stream of expenditures equals the future stream of revenues. Stated 
differently government debts are not inflationary when they are temporary, 
so that the budget is balanced in a present value sense. In reality, 
however, the fiscal authority sets Gt and T,, and the monetary authority the 
decides to cover the debt by money creation or by borrowing, or by a 
combination of the two. The rate of inflation in the short term is a 
consequence of this choice. 

Obviously borrowing cannot be unlimited. When the debt reaches such a 
level that the future stream of surpluses required to offset it, cannot be 
supported by the economy, private (domestic and foreign) agents refuse to 

I-J In many models (see e.g. Sargent (1989)) the objective of the 
authorities is believed to be the minimization of the mean squared error of 
real GNP growth rate yt around some predetermined target level y*, in 
symbols 

min E[(yt - r*)*l 

where yt is linked to the real money balances through a simple portfolio 
balance schedule of the form 

Yt - mt - Pt + nt 
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subscribe to government securities, no matter how high the interest rate is. 
In practice when the government can only resort to massive confiscation to 
meet its commitment, agents are afraid that it is an easier (politically 
more feasible) alternative to "expropriate" bondholders. In anticipation of 
this occurrence agents require higher and higher real interests to the point 
that the monetary authority has no choice but to monetize the debt. In the 
extreme, all the deficit is financed by money printing, that is by an 
immediate inflation tax. In this event B, - 0. Clearly between Ricardian 
Rule and full monetization there is a whole range of intermediate. 
These issues have been treated in a vast literature (Sargent (1986) contains 
an excellent review), but rarely have been explicitly mentioned in empirical 
studies on bubbles in hyperinflation. In particular it should be made clear 
that Cagan's equation holds for a given fiscal policy which forces the 
monetary authority to resort prevalently to money creation to finance 
expenditures. 

This lengthy digression explains the choice of the functional form 
(3.4) for the money supply with a twofold rationale. One, that in periods 
of chronic high inflation only small increases in Bt are feasible, i.e., 
Bt - Bt-1 = 0, so persistent deficits are almost fully monetized. Two, 
fiscal imbalance is the product of relatively stable historical conditions 
and unlikely to change suddenly, hence deficits must be modelled by a highly 
persistent stochastic process, like (3.4). and so does the monetary rule. 
Furthermore the substantial dependence of monetary policy from the fiscal 
regime determines the exogeneity of money supply with respect to the price 
level which is an implicit prerequisite for the Hamilton and Whiteman test. 

2. The solution to the expectational equation 
and its testable iutnlications 

Equation (3.3) with variables specified as in (3.4) can be solved 
using the z-transform method conjecturing a solution of the form: 

Pt - f(L)q,t + dL)qt (3.6) 

The appendix contains a simple example of the z-transform method with 
a fractionally integrated driving variable. The same type of solution can 
be devised in the present, more general, case, following Hamilton and 
Whiteman (1985). 

(l-aL)(l-L)dpt - (f0(1-L)d+IA(L)+LR(L))rl,t + 

(c0(1-L)d+LB(L)+LW))QJ. (3.7) 
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Depending on the value of a, the constants (0 and no can be determined 
by the requirement that the functions (l-z)d<(z) and (l-~)~n(z) must be 
analytic on the unit circle. For Ial > 1 this leads to: 

(0 - -(l-l/a)'d(a'l A(W)+l/a NW)) 

UO - -(l-l/a)-d(a'l B(l/a)+l/a S(l/a)). (3.8) 

For Ial I 1, these conditions are not required for analyticity, but hold if 
the parsimony principle is invoked, that is if model specification involves 
the minimum number of explanatory variables. 

The solution (3.6)-(3.8) to equation (3.3), valid for all processes xt 
and nt that can be represented in terms of square summable operators A(L), 
B(L), R(L), S(L) is called the fundamental solution for it depends on the 
driving variable only. 

By contrast, solutions to (3.3) depending on other--possibly 
completely independent variables --are referred to as bubble or sunspot 
solutions. Following Hamilton and Whiteman (1985) and Burmeister, Flood and 
Garber (1983), the particular solution as a function of any finite number of 
white noises ~i,~ i-l,z,....,m , completely unrelated to (xt,nt), and of the 
fundamental solution p t is 

y(l-aL) (l-L)++ -(l-aL)(l-L)dp*t+Q1(l-L)d~l,t+...+Q,(l-L)drlm,t~ (3.9) 

for any values Qi. The conditton Qi z 0 for some i, implies the existence 
of a bubble or sunspot equilibrium. 

The essence of the Hamilton and Whiteman test is to estimate the 
difference in the order of integration of the two series. From (3.7) we 
divide both sides by (1-aL): 

(1-L)dpt-(l-L)dp*t+(l-aL)~1[Q1(l-L)d~~,t+...~m(l-L)~m,t~+~t~ (3.10) 

where K is an arbitrary constant. If K - Qi - 0 Vi, i.e., in the absence of 
bubbles or sunspots, both sides of (3.9) are integrated of the same order. 
Otherwise, the nonstati.onary terms (1-aL)-$i t, by the algebra of 
integrated series, would render the right hand side integrated of an order 
higher than d. 

As discussed by Hamilton and Whiteman (1985) this difference in the 
order of integration is the only testable hypothesis implied by 
nonfundamental solutions because the parameters of the model (3.3)-(3.4) are 
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observationally equivalent in the presence or absence of bubbles or other 
extraneous influences. In addition this test does not rely on the assumed 
stochastic process for the nonstationary component. In this respect the 
test is general, while results obtained in previous studies depend on the 
arbitrary choice of the bubble or sunspot process. 

IV. Detecting Nonfundamental Influences 

This section is devoted to some basic issues arising in testing for 
bubbles or sunspots in rational expectations models. The starting point is 
Evans' critique of the Hamilton and Whiteman test which epitomizes the 
confusion arising in the analysis of nonstationary processes when standard 
techniques are employed. 

Evans (1991) defines a bubble process of the form: 

Bt+l - (l+r)Btut+l 

B t+r = 
[ 
a++ (1+r) Ql pt-$1 %a 

Bt 5 a 

B,> a, 

(4.1) 

where 6 and a are positive parameters which satisfy 0 < 5 < (l+r)a, ut+l is 
an identically and independently distributed exogenous positive random 
variable with unit expectation, and B,+l is an identically and independently 
distributed exogenous Bernoulli process, unrelated to u, so that: 

8 t+1 = 1 
1 with prob. IS 
0 withprob. (1-x) * 

Note that B, is always positive, grows at rate l+r until it exceeds 
the value a, where it starts to explode at a mean rate (l+r)/z, subject to a 
probability l-x of bursting and reverting to a mean value of 6. The average 
duration, the peak, the frequency of bursts, etc., depend on the values of 
the parameters. Evans (1991) asserts that this "nonstationary" bubble 
cannot be detected by unit root tests. In a Montecarlo study, in fact, it 
appears that the Dickey-Fuller test regularly rejects the hypothesis of 
nonstationarity for 100 realizations of Bt. Evans (1991) thus concluded 
that the Hamilton and Whiteman's idea although theoretically valid, has 
limited practical application. 
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What this critique highlights is the inadequacy of the statistical 
methods based on integer orders of integration. u The crucial feature of 
Evans' process is its periodic collapse. When added to the fundamental 
solution, it affects only the high-frequency components of the spectral 
density. The nonstationarity of a series is directly linked to its spectral 
density, and in particular to its slope near the origin; hence a "bubble" is 
not detectable unless it alters in a significant way the lower frequency 
terms. A look at Chart 1 gives a visual insight to this argument. 
Realizations of B, with 400 observations for different values of the 
parameters are depicted. It is evident that this "bubble" bursts fast, when 
compared to the length of the series, thus its effect is notable only in the 
short-cycle components of the spectrum. The Dickey Fuller test, based on 
integer orders of integration, concentrates on the low frequency components 
of the spectrum and for this reason it is inadequate to analyze the process 
suggested by Evans (1991) and all the homogeneous terms that alter the high 
frequency (short-term) components in the fundamental solution to (3.3). On 
the contrary, fractionally integrated models provide a viable way of 
detecting the presence of bubbles or extraneous influences. A formal 
argument can be introduced by looking at the spectrum of ARFIMA(p,d,q) 
processes: 

f(X) - 11 - e-iXI-2d f,(X), 

where 

f,(A)- (u*le exp(-iX)1*)/(2x 14 expt-iAll*) 

is the spectral density of the ARMA(p,q) process ut - (l-L)dXt; taking the 
natural logarithm, adding and subtracting log(f,(O)), we obtain: 

l-J Hall and Sola (1993) and Blackburn and Sola (1993), have resorted to 
the Markov regime switching proposed by Hamilton (1988, 1990), to overcome 
Evans' critique. While this approach is based on premises quite different 
from the ARFIMA models, it nevertheless is well suited for detecting the 
presence of Evans' processes. 
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In f(X) - In f,(O) - d InIl-e -ihlz + ln[f,(X)/f,(O)]. I/ 

Therefore, the order of differentiation d is essentially the negative slope 
of the log spectrum close to the origin, which is equivalent to asserting 
that the order of integratton has a more pronounced dependence on the low 
frequency components. 

To verify this theoretical proposition, we estimated the order of 
integration of a number of synthetic processes B, with the same parameters 
Evans uses in his paper. In all cases the estimated order of integration 
was around 0.3, which implies first, that this type of process is 
stationary, and second, that it can be detected by estimating the difference 
in the order of integration as Hamilton and Whiteman suggest. This 

conclusion is obviously not limited to the specific form of process Evans 

I/ This expression is also the basis for the estimation of the parameter 
d. Following Geweke and Porter-Hudak (1983), substituting to the 
frequencies A, 0 < X < R, the Fourier frequencies w 

?1 
- Zzj/n E (0,x) and 

adding the log of the periodogram In{wj) to both si es, we find: 

InI,(ln fu~O)-dln~l-e~i~j~*+ln[In~oj)/f~wj)]+ln~fu~wj)/fu~O)], 

which has the form of an OL8 regression: 

3 -a+Bx +q- j J' 

- InI, * a - In f,(O), xj - ln]l-e'iDj]2, ln[In(w )/f(wj)] represents 
e normally distributed error term q and ln[f,(wj)/f,( d )J becomes 

negligible as the attention concentrates on harmonic frequencies near zero. 
The estimator of d, therefore, will be given by: 

” 

-p (x,-E(x) 1 (Y@(yl) 
z= -1 , 

F 
n ( xi-E(x) 1’ 
-1 

which, according to Geweke and Porter-Hudak simulations, for m - n112 is the 
asymptotically normal best linear unbiased estimator. 
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considers, but to all processes that are stationary and nonstationary with a 
nonzero order of integration. u 

As a final remark, it is certainly conceivable that in speculative 
markets, a process like B, could be started by news hitting the market, but 
it would be much less likely that a hyperinflation process, which is a long 
and sustained phenomenon, could be attributed to this sort of rapidly 
bursting homogeneous component. Data on hyperinflation do not show 
sequences of rapidly collapsing price explosions. Inflation, on the 
contrary, is persistent rather than intermittent. Our aim in the next 
section is to verify whether it is more persistent than money supply 
increases. 

V. The EmDirical Analysis 

In essence, the empirical analysis consists of estimating the 
fractional order of integration of the money supply and the consumer price 
level. If no bubbles or sunspots are present the order should be 
approximately equal. 

The estimation was carried out using a Fortran program written by 
Fallaw Sowell at Carnegie Mellon and based on Sowell (1993). u The data 
were obtained from International Financial Statistics, published by the 
International Monetary Fund. This source provides a homogeneous definition 
for both variables across countries and therefore allows a meaningful 
comparison of the results. It is important to stress that the money series 
refer to narrow money (line 34 in the IFS) and the price level is the 
consumer price level (line 64 in the IFS). 

The data span different periods, but are always on a monthly basis. 
For Argentina and Peru, they start in January 1971 and end in December 1989, 
while for Bolivia, Brazil and Chile they extend only through December 1987, 

u A word of caution is in order, namely, that the empirical method used 
to estimate the order of integration of Bt is important; in fact, a two- 
stage procedure, such as proposed by Geweke and Porter-Hudak (1983). is not 
well suited for this purpose. The reason is that it attaches too much 
importance to lower frequency components of the spectrum, while B, has more 
influence on short cycles. In fact, to verify empirically this claim in a 
Monte Carlo study, we estimated with the Geweke and Porter-Hudak procedure 
the fractional difference parameter of two hundred realizations of the 
bubble processes proposed by Evans (1991). The results showed that d was 
never significantly different from zero, whereas its true value is 0. 

u We introduced a modification in the original version by resorting to a 
different subroutine for calculating the roots of autoregressive 
polynomials. It was developed at the Department of Astrophysics of the 
University of Chicago and employs Muller's method. The calculations were 
executed on a Sun Spark 2 Unix workstation. 
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February 1986, and June 1985 respectively. The data on the Former Socialist 
Federal Republic of Yugoslavia, cover the period January 1975-June 1990. 

The results are shown in Tables 1-6. For each country are reported 
the results relative to all models for which the maximum likelihood 
optimization converged to meaningful values and the sensitivity to initial 
conditions was not extreme. The identification procedure for ARFIMA models 
is still a debated question so the tables offer a detailed account of all 
the results, not only those relative to the model identified by any 
controversial criterion. 

Specifically, for each model the tables report the estimated value of 
d wLth t-statistics in parenthesis; the estimated autoregressive and moving 
average parameters (when present) in the columns AR and MA, starting from 
the first lagged component; the ratio between the variance of the predicted 
values and the variance of the &ta in the column a/var (which is a sort of 
R2 statistic); the Akaike Information Criterion (AIC); the Schwartz 
Information Criterion (SIC) and finally the log-likelihood at optimum (MAK. 
LIK). 

Moreover in the tables negligible sensitivity designates a situation 
where changing the initial values affects only slightly (plus o minus 
10 percent) the t-test values; little sensitivity means that the parameters 
estimates exhibits changes in the second decimal digit, and sensitivity to 
initial condition refers to the case where the maximization algorithm finds 
local maxima so that parameter estimates change in value and significance. 
For the latter the tables report the model with the highest log-likelihood. 

Both the AIC and the SIC strongly point at the ARFIMA(l,d,O) as the 
preferred model. In no case and for none of the models reported in the 
tables, the estimates indicate that the variables have different levels of 
nonstationarity. Furthermore the 95 percent. confidence intervals indicate 
that difference in the orders of integration of money supply and prices are 
never very significant. This evidence suggests that sunspot or bubble 
equilibria can be excluded based on the Whiteman and Hamilton procedure. 
However, it is true that the orders of integration of the price level and 
money are not always exactly the same, which means that the short-cycle 
components of money supply and price levels are different. 

In what follows a detailed account of the results for each country 
will be presented. 

Former Socialist Federal Republic of Yugoslavia. This is one of the 
two countries where the difference in the order of integration between the 
money supply and price levels is negligible. The AIC and SIC values leave 
few doubts about the identification of the ARFIMA(l,d,O) model. Further, 
the other models yield estimates of d which are similar to the 
ARFIMA(l,d,O). The only exception is the ARFIMA(l,d,Z) for price level. 

Therefore, the evidence against the existence of bubbles is strong. 
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Peru. The results for Peru are analogous, except for the somewhat 
greater sensitivity to initial conditions registered for the model 
ARFIMA(l,d,O) relative to the price level. Otherwise, the estimates of d 
for both series are extremely close in all models. 

Chile. The model ARFIMA(l,d,O) identified by the AIC and the SIC for 
both series exhibits an estimated d equal to 0.31 for the money supply and 
to 0.4 for the price level. The result does not change substantially when 
we exclude from the initial sample period the years 1971, 1972, and 1973, 
i.e., the period before the military took power. 

This difference in the orders of integration is not substantial: the 
hypothesis that they are different would not be accepted at conventional 
significance levels. However, we want to draw attention to the fact that, 
for Chile, the estimates of d vary across models. Further, the AIC, and 
especially the SIC, for the model ARPIMA('L,d,O) are close to those for 
ARFIMA(l,d,O), so the identification procedure in this case leaves some 
degree of uncertainty. The estimates of d in the ARFIMA(P,d,O) models are 
practically identical: 2.48 for price level and 2.47 for money supply. 

In conclusion, even for Chile the evidence in favor of the "no 
bubbles" hypothesis is strong, although not as categorical as in the first 
two cases. 

Bolivia. A strict adherence to the AIC and SIC again points to the 
ARFIMA(l,d,O) representation. The estimates of d again differ 
significantly, but not enough to establish the presence of bubbles. 
Moreover, although the ARFIMA(Z,d,O) does not fully capture the behavior of 
prices, it is adequate to describe the dynamics of money supply. In this 
case the estimate of d is 2.46 much closer to the value 2.43 obtained with 
the ARFIMA(l,d,O), the most reliable model for the price level. 

Argentina. Here the difference in the estimated d values is more 
pronounced. The ARFIMA(l,d,O) representation, selected by the AIC and SIC, 
shows 2.47 for the price level and 2.35 for the money supply. Moreover, the 
identification methodology does not suggest other viable models. Therefore, 
it follows that a difference in the order of integration is likely. 

Brazil. This is the country where the difference in the estimated 
order of integration for the ARFIMA(l,d,O) model is most significant. On 
this basis, the existence of a rapidly collapsing bubble process cannot be 
excluded, although there is no evidence of difference in the order of 
stationarity, 

However, unlike for Argentina, the strength of this conclusion is 
mitigated by the fact that for money supply, the value of AIC and SIC 
relative to the ARFIMA(Z,d,O) (equal to 473 and 464 respectively), are 
comparable to the values relative to the ARFIMA(l,d,O), (439 and 433 
respectively). The estimated d parameter in the ARFIMA(Z,d,O) 
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representation is 2.43, close to the value of 2.48 obtained for the price 
level. 

What is the general picture emerging from the econometric analysis? 
We can strongly reject the existence of bubbles that alter the degree of 
stationarity of the fundamental solution. But the mixed results we obtain 
for Argentina and Brazil need further interpretation. Two lines of 
reasoning will be presented. One focuses on the credibility of fiscal 
reforms, the other on the legal mechanisms devised to shield certain groups 
from the effects of inflation. 

1. Fiat money and the present value of future budget deficits 

Sometimes the literature on hyperinflation concentrates on 
econometrics and pays little attention to an aspect of extreme relevance 
highlighted in Chapter 3 of Sargent (1986). The same amount of high-powered 
money in circulation in different fiscal regimes, leads to different 
inflation rates. For example, in Austria the hyperinflation process after 
World War I was stopped by the change in fiscal regime following the accord 
on the reform of the financial system and the fiscal policy, signed on 
October 2, 1922, between the Austrian Government and the Council of the 
League of Nations. The sudden stop in hyperinflation was achieved despite a 
six-fold increase in high-powered money between August 1922 and December 
1924. lJ No currency reform was undertaken. 

Therefore, the nature of Cagan's equation should be interpreted as 
expressing a relation between money supply and price levels for a given 
fiscal rule. Substantial changes in fiscal regimes alter the relationship 
between money and inflation and this must be reflected in the econometric 
analysis. 

The two countries where the absence of bubbles is unequivocal, Peru 
and Former Socialist Federal Republic of Yugoslavia, are those where fiscal 
reform was never seriously pursued in the period examined. 

Chile achieved a substantial stabilization pursuing a steady fiscal 
discipline without substantial variations, which nevertheless took many 
years to be completed. 

The other three countries have a history of economic and political 
turmoil with frequent shifts from civilian to military rules and vice-versa, 
which gave rise to substantial uncertainty over fiscal policies and the 
credibility of announced stabilization programs. For Argentina and Brazil 
the consequence has been a chronic high rate of inflation. 

The key feature of fiscal reform consists in credibly redefining the 
general strategy of tax collection, transfer and expenditures. Isolated 
actions or unenforceable declarations of intent (the promise to fight tax 

u See Sargent (1986), Chapter 3, for a more detailed account. 



evasion is a classic example) should not be regarded as reforms. Actually 
they tend to have the opposite effect, as the public realizes that they are 
a symptom of impotence, rather than determination to tackle the roots of the 
problems. 

Therefore, the difference in the order of integration detected through 
the econometric analysis is likely to reflect the correct perception that an 
inadequate fiscal stance increases the present value of future deficits and 
substantially lowers the value of unbacked (outside) money in circulation. 

2. Nonstate continpent contracts and the momentum of Inflation 

A protracted period of high inflation almost inevitably brings a 
demand for protection. Individual agents or, more likely, coagulated 
interest groups try to shield themselves from the inflation tax. The best 
known and widely used device is wage indexation. Indexed government bonds, 
are another example. Pricing strategies by firms with some market power, 
produce important effects. 

The most important theoretical contribution on persistent inflation 
were originated by Taylor (1979) and Phelps and Taylor (1977) and focus on 
staggered wage contracts. Inflation maintains a momentum because agents are 
forced to bargain multiperiod contracts, which necessarily reflect the 
expectations over relevant variables at the time they are negotiated. In 
addition the overlapping of collective contracts in different sectors of the 
economy contributes to the sluggishness in inflation. 

In general all nonstate contingent mechanisms of protection are a 
source of persistence in inflation. Since these phenomena are independent 
of monetary policy, the econometrician should find a slight difference in 
the orders of integration. 

VI. Summarv and Conclusions 

The objective of this paper is to test the hypothesis that high 
inflations are caused by self-fulfilling expectations, which in the economic 
literature have been identified with the existence of "bubbles," or by 
extraneous influences called "sunspots". Mathematically, these effects are 
depicted by the homogeneous term in the solution to the expectational 
equation (3.3). 

As stressed by Hamilton and Whiteman (1985) the presence of a 
homogeneous term can only be verified by analyzing the difference in the 
dynamics of price level and money supply as reflected in the orders of 
integration. This paper was aimed at testing the significance of this 
difference for a number of countries during the 1970s and part of the 198Os, 
based on recent econometric advances in the theory of fractionally 
integrated processes. This methodology allows one to detect differences in 
spectral components of price level and money supply overcoming Evans'- 
critique. 
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Our results show that the difference in order of integration is in 
general small, although in a few cases it is not negligible: for most 
countries examined, the AIC and SIC point atan ARFIMA(l,d,O) model for both 
price levels and money supplies, although the ARFIMA(Z,d,O) process is also 
acceptable in some cases. Most estimates of d lie in the interval [2.45, 
2.491 indicating that the second differences of the series are stationary. 

These results are similar in spirit--though not in methodology--to 
related results in the recent literature on hyperinflation including 
Phylaktis and Taylor (1993), who use the same data set, and employ standard 
co-integration analysis. Blackburn and Sola (1993) on the other side find 
that for Argentina, the presence of a rapidly bursting bubble cannot be 
rejected. 

So it seems that, overall, the empLrica1 evidence against persistent 
self-fulfilling expectations or sunspots is strong. What cannot be excluded 
in some cases is the sporadic temporary divergence between the money supply 
and price level short-cycle dynamics. 

This phenomenon might be attributed on one side to stabilization 
programs based on isolated actions, and not on a substantial shift in fiscal 
regime, on the other to nonstate contingent protection from inflation 
accorded to some special groups. 
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An example of the Z-Transform Method for the Solution of Expectational 
Eauations with Fractionally Integrated Variables 

In equation (3.1) we assume that the money supply follows a fractional 
noise 

m,=(l-L)-%, - - 
F 

l-t +d) 
-o r(j+{)r(d) ‘t-j = F(L)at (A.3) 

The crucial condition for deriving a solution is the convergence in mean 
square of the terms fi, i.e., (see Appendix): 

which is satisfied for -1 < d < .5. 

According to the z-transform method described in Whiteman (1983) and 
extended in a more general setting in Hamilton and Whiteman (1985), the 
solution for p must belong to the same space as the driving process m, in 
this case the Hilbert space generated by linear combinations of Ct. 
Actually Whiteman (1983) stated the Solution Principle in four tenets: 

1. The driving process must be a covariance stationary stochastic process 
with an explicit Wold representation. 

2. Expectations are formed rationally in the sense of Muth (1961) and the 
predictors can be found through the Wiener-Kolmogorov formulas. 

3. Solutions lie in the space generated by square summable time 
independent linear combinations of the driving process. 

4. The rational expectation hypothesis holds for all realizations of the 
driving process. 

Hamilton and Whiteman (1985) show that the z-transform technique is 
applicable to any dynamic behavior representable in terms of square summable 
operators. 

The general form of the solution will have the non-normalized Wold 
representation: 

B 
Pt = F 

k,L’h?, - C(L)@, , 
-0 
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where the ci's are mean square convergent. The z-transform method allows to 
find a form for C(z) in terms of F(z) and the parameter of the model, 
provided that F(z) and C(z) are both holomorphic on the open unit disk 
IZI < 1. Since we implicitly assume that: 

“t - (et, et-1s ‘t-2,...*) a c-it 3 ntel 3 ntm2 3 rite3 .,...., 

the Wiener-Kolmogorov predictor is: 

E(pt+l 1 n,) - Cl’t + C2Ct-1 + ***** 

Putting in evidence the reciprocal of the lag operator, the above 
expression becomes: . 

Up,+1 I nt) - L-1(=1+1 + C2Ct-2 + . . ...> - L-l[C(L)-COIQ. 

Substituting this result fn 5.2.1, we get: 

[L‘l[C(L)-cOJct - aC(L)ct - F(L)c, , 

which implies: 

(1-az)C(z) - zF(z)+cD , 

and thus: 

C(z) - (zF(z)+cC) (z-a)-‘. 

For a solution to exist, C(z) has to be holomorphic in IzI < 1, which 
is true if, and only if, Ial s 1. This is the case we treat later. When 
lo\ > 1, for C(z) to belanalytic on the open unit disk, we have to show that 
the singularity at z-o is removable, that is, we have to show that: 

limtl-az)C(z) - 0 - a-lF(a-l) < 0. 
x-a-' 

(A.51 

Applying Stirling's formula as i + Q) fi = id-l/F(d) and hence for 
d E (0,l): 
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m 
1 

= '+I'(d) (1-a) . (A-6) 

As a consequence, CO - a -lF(a-l) or CO - a’1(l-a-1)‘d. The unique 
solution for pt in the latter case, according to the Solution Principle, is 
given by: 

p 
t 
= LF(L) -a-lF(alHxa-l) et=(l-atj -I 

l-aL 
Lf'let-tCIF(a-l) et 

I 
, 

which can be re-expressed as: 

(I-aL)p, = LO fietmi--$ - 
F F 

f,aA, 
-0 -0 

m 

= (L-a-l) 
7 

f, (et-, +a%,) 
-0 

Bt = aL-1 " 
a (I-aLI -o 7 

fi(et-i+a-iet) . 

(A.7) 

(A. 8) 

(A. 9) 

This last result shows that the price is the sum of two components, 
i.e., 

Pt - -v -d a-let - qt, (A-10) 

where qt -cOct, and from the algebra of the integrated series we conclude 
that pt - I(d), that is, the same order of integration as mt. Analogously, 
when Ial < 1, i.e., when the expectation of future price changes has an 
impact greater than the one on current prices, the restriction that C(z) and 
F(z) must be analytic does,not specify a value for CO and no unique solution 
can be found. The general solution has the form 

M(L) +co m 
Pe = 

r(f+d) 
. 1-aL =t 

F: -o r(i+l)r(d) ‘t-l4 I 
(A.11) 

The difference from (A.9) is the more specific form of the solution, 
which is an ARFIMA(l,d,O) with AR parameter a. (A.lO) and (A.ll) are 
usually referred to as the fundamental, or bubble-free, solution. 
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Table 1. Argentina 

APPENDIX II 

Price Level 

ARFIMA (1, d, 0) (No sensitivity to initial conditions) 

d AR MA a/var AIC SIC MAX.LIK 

2.47 -0.64 0.24 396 390 200.4 
(12.04) (-12.03) (10.08) 

conf. intvl 
f0.08 

ARFIMA (1, d, 1) (Little sensitivity to initial conditions) 

d AR MA u var AIC SIC MAX.LIK 

2.24 -0.55 0.99 0.13 529 519 268.00 
(2.18) (5.18) (67.9) (10.60) 

““% F’ . 

ARFIMA (2, d, 0) (Negligible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.46 -1.04 0.16 485.5 475.2 245.7 
(8.28) ‘-1y;’ (10.15) 

conf. intvl (11:08) 
fO.ll 

ARFIMA (2, d, 1) (Negligible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.21 -0.67 0.98 0.13 533 519 270.8 
(1.74) 'y;' (63.60) (10.91) 

conf. intvl (2:44) 
f0.23 

ARFIMA (2, d, 2) (Little sensitivity to initial conditions) 

d AR HA u var AIC SIC MAX.LIK 

2.39 -1.04 0.48 0.12 535 518 272.7 
(3.72) ‘-fp$’ (3.51) (10.24) 

-0.55 
conf. intvl (7:20) (-3.95) 

f0.20 
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Table 1. Argentina 

Money SUPD~Y 

ARFIMA (1, d, 0) (No sensitivity to initial conditions) 

d AR MA a/var AIC SIC MAX.LIK 

2.35 -0.15 0.36 338 331 171.31 
(4.36) (6.07) (10.71) 

conf. intvl 
f0.16 

ARFIMA (1, d, 1) (No sensitivity to initial conditions) 

d AR MA a/var AIC SIC MAX.LIK 

2.35 -0.05 1.01 0.23 429 419 217.9 
(4.66) (0.52) (48.04 (10.23 

conf. intvl 
kO.15 

ARFIMA (2, d, 0) 

d AR MA a/var AIC SIC MAX.LIK 

2.46 
(9.15) 

-0.59 
‘-;.;;I 

0.32 365 355 185.8 
(10.13) 

conf. intvl (5.71) 
kO.10 

ARFIMA (0, d, 2) (No sensitivity to initial conditions) 

d AR MA u var AIC SIC MAX.LIK 

2.35 1.05 0.24 429 419 217.9 
(4.59) 'lyg' (10.59) 

conf. intvl (0:55) 
f0.15 

ARFIMA (2, d, 2) (Sensitivity to initial conditions) 

d AR MA u var AIC SIC MAX.LIK 

2.37 0.94 2.00 0.23 429 413 217 
(5.12) 'lpi wy3 (10.24) 

conf. intvl (3:26) (62:9) 
f0.14 .- 
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Table 1. Argentina 

APPENDIX II 

ARFIMA (2, d, 2) (Sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.37 -0.03 1.00 0.23 428 414 218 
(4.01) yg' (51.82) (10.06) 

conf. intvl co: 39) 
f0.18 
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Table 2. Brazil 

APPENDIX II 

Price Level 

ARFIMA (0, d, 0) (No sensitivity to initial conditions) 

d AR MA o/var AIC SIC MAX.LIK 

2.48 -0.45 0.11 861 855 433 
(17.5) (-6.22) (9.6) 

conf. intvl 
f0.05 

ARFIMA (1, d, 1) (No sensitivity to initial conditions) 

d AR MA a/var AIC SIC MAX.LIK 

2.49 0.15 -1.22 0.06 887 867 467 
(26.78) (0.98) (6.7) (3.28) 

conf. intvl 
f0.03 

ARFIMA (2, d, 0) (Negligible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.49 -0.58 0.10 879 869 442 
24.76 '-;.f;' (9.53) 

conf. intvl (4:55) 
f0.40 

ARFIMA (2, d, 1) (negligible sensitivity to initial conditions) 

d AR MA a/var AIC SIC MAX.LIK 

2.24 0.28 0.98 0.09 889 876 448.9 
(18.22) (3.12) wpf;' (8.43) 

conf. intvl (-2:56) 

ARFIMA (1, d, 2) (Sensitivity to initial conditions) 

d AR MA a/var AIC SIC MAX.LIK 

2.48 0.82 1.83 0.03 893 880 450 
(25.48) (11.02) y.3' (2.17) 

conf. intvl (4:21) 
f0.04 
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Table 2. Brazil 

Money SUDD~Y 

ARFIMA (1, d, 0) (Little sensitivity to initial conditions) 

d AR MA u var AIC SIC MAX.LIK 

2.23 -0.3 0.66 439 433 221 
(3.53) (-2.82) (9.45) 

conf. intvl 
f0.13 

AFRIMA (0, d, 1) (No sensitivity to initial conditions) 

d AR MA a/var AIC SIC MAX.LIK 

2.14 1.02 0.41 511.2 504.7 257 
(2.90) (61.47) (0.17) 

conf. intvl 
fO.10 

ARFIMA (1, d, 1) (Little sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.20 0.15 0.98 0.43 511 502 258 
(4.65) (1.56) (59.38) (9.41) 

conf. intvl 
f0.08 

ARFIMA (2, d, 0) (Neglible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.43 -0.20 0.53 473.1 464 239.8 
(7.72) '-p-;' (9.79) 

conf. intvl (6:62) 
fO.ll 

AFRIMA (2, d, 1) 

d AR MA u/var AIC SIC MAX.LIK 

2.36 0.33 0.97 0.40 522.1 510.1 265.4 
(5.50) 'y;' (55.89) (9.53) 

conf. intvl (4:oo) 
f0.13 
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Table 2. Brazil 

APPENDIX II 

AFRIMA (0, d, 2) (Little sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.47 0.27 0.40 520.4 510.8 263.2 
(10.70) !;. $’ (0.94) 

conf. intvl (-7:80) 
f0.09 

ARFIMA (1, d, 2) (No sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.46 -0.17 0.29 0.40 520 508 264.4 
(9.08) (-1.5) (3.76) (9.55) 

-0.67 
conf. intvl (-9.25) 
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Table 3. Bolivia 

APPENDIX II 

Price Level 

ARFIMA (1, d, 0) (No sensitivity to initial conditions) 

d AR MA a/var AIC SIC MAX.LIK 

2.43 -0.50 0.24 275 268 139.62 
(6.72) (-6.88) (10.10) 

conf. intvl 
f0.12 

ARFIMA (0, d, 1) (No sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.46 1.00 0.14 377 370 190 
(12.33) (12.08) (8.68) 

conf. intvl 
f0.07 

ARFIMA (1, d, 1) (No sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.39 -0.18 0.99 0.14 378 368 192 
(5.20) (-1.52) (49.96) (9.70) 

conf. intvl 
f0.15. 

ARFIMA (2, d, 0) (Sensitivity to initial conditions) 

d AR. MA u/var AIC SIC MAX.LIK 

2.49 -0.70 
(4.65) '-1yt' 

0.17 335 325 170.8 
(9.91) 

conf. intvl (8.13) 
f0.20 

AFRIMA '(2, d, 1) (Sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.45 -0.15 1.01 0.13 380 367 194.4 
(10.26) c-g.;;' (7.48) (10.59) 

conf. intvl (2:03) 
f0.08 
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Table 3. Bolivia 

ARFIMA (0, d, 2) (No sensitivity to initial conditions) 

d AK MA u/var AIC SIC MAX.LIK 

2.39 1.22 0.14 380 370 183 
(7.55) ';.;;I (10.08) 

conf. intvl (3:55) 
fO.10 

ARFIMA (1, d, 2) (Negligible sensitivity to initial conditions) 

d Au MA u/var AIC SIC MAX. LIK 

2.39 0.05 1.26 0.14 378 364 193 

coJ5'PAtvl 
(0.21) 'l;.;;) (0.36) 

*to.13 (2:9) 

AFRIMA (2, d, 2) (Sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.47 -0.34 0.79 0.13 379 363 194.9 
(11.90) '-p-&l (3.56) (9.68) 

-0.22 
conf. intvl (3:09) (-1.05) 

f0.08 

Monev SUDDEN 

ARFIMA (1, d, 0) (Negligible sensitivity to initial conditions) 

d AR MA u var AIC SIC MAX.LIK 

2.32 -0.32 0.50 133 127 68.9 
(3.74) (-3.02) (10.06) 

conf. intvl 
f0.17 

ARFIMA (0, d, 1) (No sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.19 1.00 0.37 185 174 94.8 
(4.41) (72.19) (9.73) 

conf. intvl 
ltO.08 
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Table 3. Bolivia 

APPENDIX II 

ARFIMA (1, d, 1) (No sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.34 0.30 1.00 0.35 194 184 100.2 
(5.48) (3.55) (78.41) (9.90) 

conf. intvl 
f0.12 

AFRIMA (2, d, 0) (Negligible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.46 -0.27 0.45 149 139 77.6 
(9.21) '-;.';i (10.01) 

conf. intvl (4:47) 
f0.10 

ARFIMA (0, d, 2) (No sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.44 0.58 0.35 196 186 101.0 
(7.35) up;' (9.80) 

conf. intvl (-8:28) 
fO.ll 

ARFIMA (1, d, 2) (No sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.43 0.05 0.62 0.35 194 180 101.1 
(6.02) (0.3) (3.36) (9.77) 

-0.38 
conf. intvl (-2.05) 

f0.14 
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Table 4. Chile 

APPENDIX II 

Price Level 

AKFIMA (1, d, 0) (No sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.40 -0.38 445 438 '224 
(5.3) (-3.85) (%) 

conf. intvl 
kO.15 

AKFIMA (0, d, 1) (Negligible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.36 1.03 0.19 515 508 259.5 
(7.34) (38.53) (8.45) 

conf. intvl 
fO.10 

AKFIMA (1, d, 1) (Negligible sensitivity to initial conditions) 

d AR MA o/var AIC SIC MAX.LIK 

2.39 0.08 1.02 0.19 513 504 259.8 
(7.54) (0.89) (42.64) (8.65) 

conf. intvl 
+0.10 

AFKIMA (2, d, 0) (Neglible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.48 -0.45 0.24 477 467 241.5 
Uyg' '-pg' (9.1) 
- . 

(6:31) 

AKFIMA (2, d, 0) (No sensitivity to initial conditions) 

d AR MA a/var AIC SIC MAX.LIK 

2.47 -0.22 0.44 399 384 202.6 
(11.80) '-;.g' (9.34) 

conf. intvl (5:55) 
Sl.08 
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Table 4. Chile 

. 

ARFIMA (0, d, 2) (Negligible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.43 0.86 0.19 514 504 260.0 
(5.95) (6.16) (8.63) 

-0.16 
conf. intvl (-1.20) 

f0.14 

AKFIMA (1, d, 2) (No sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.46 -0.27 0.57 0.18 513 510 260.1 
(9.10) (-1.7) (3.34) (8.57) 

-0.46 
conf. intvl (-3.64) 

f0.1 

AKFIMA (2, d, 2) (Moderate sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.46 0.01 0.89 0.18 513 498 261 
(10.34) y;' ';.;;I (7.62) 

conkl i&"' 
(1:73) (-0:54) 

. 

Monev SUDDEN 

AKFIMA (1, d, 0) (Negligible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.31 -0.28 0.51 376 370 190.2 
(4.50) (-2.93) (8.61) 

conf. intvl 
f0.13 

AKFIMA (0, d, 1) (Negligible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

(::L, (5X0) 
0.35 436 430 220 

(9.07) 

conf. intvl 
f0.07 
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Table 4. Chile 

ARFIMA (1, d, 1) (Negligible sensitivity to initial conditions) 

d AR MA o/var AIC SIC MAX.LIK 

2.24 0.21 (6:::2) 0.34 439 430 222.7 
(4.65) (2.35) (8.84) 

conf. intvl 

ARFIMA (2, d, 1) (Negligible sensitivity to initial conditions) 

d AR MA u/var AIC SIC - MAX. LIK 

2.39 0.35 1.00 0.33 443 430 225 
(6.70) ‘y;’ (50.77) (9.23) 

conf. intvl (2:46) 
f0.11 

ARFIMA (2, d, 2) (Little sensitivity to initial conditions) 

d AR MA a/var AIC SIC MAX.LIK 

2.40 0.93 0.32 441 425 225.7 
(4.0) ‘pg’ (8.77) 

conf. intvl (-0:14) 
f0.20 
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Table 5. Peru 

Price Level 

ARFIMA (1, d, 0) (Sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.47 -0.51 0.14 623 616 313.8 
(12.79) (-7.64) (11.02) 

conf. intvl 
f0.07 

ARFIMA (0, d, 1) (No sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.48 1.00 0.09 702 695 353.0 
(29.22) (62.80) (20.14) 

conf. intvl 

ARFIMA (1, d, 1) (Negligible sensitivity to initial condition) 

d AR ifA a/var AIC SIC MAX.LIK 

2.48 0.04 1.00 0.09 700 690 353 
(27.16) (0.57) (62.80) (10.38) 

conf. intvl 
kO.03 

ARFIMA (2, .d, 0) (No sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.49 -0.61 0.13 635 624 
(34.11) (-11.41) (10.61) 

conf. intvl 
f0.03 

0.24 
(3.99) 
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Table 5. Peru 

APPENDIX II 

ARFIMA (0, d, 2) (Negligible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.49 
(25.02) 

0.96 0.09 700 
(6.89) (10.96) 

conf. intvl 
+0.04 

-0.03 
(-0.26) 

ARFIMA (1, d, 2) (Sensitivity to initial condition) 

d AR MA u/var AIC SIC MAX.LIK 

2.49 0.19 0.15 0.09 698 684 353 
(62.21) (6.04) (5.29) (13.62) 

conf. intvl 
kO.01 

1.15 
(49.61) 

Money SUDD~Y 

ARFIMA (1, d, 0) (No sensitivity to initial conditions) 

d Au MA u/var AIC SIC MAX.LIK 

2.48 -0.21 0.25 594 588 299.49 
(20.96) (-3.21) (11.17) 

conf. intvl 
f0.04 

ARFIMA (0, d, 1) (Little sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.35 1.00 0.19 649 642 327.0 
(9.37) (80.11) (10.7) 

conf. intvl 
k-o.07 

-0.95 
(-13.43) 
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Table 5. Peru 

. 

ARFIMA (2, d, 0) (Negligible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.49 -0.24 0.23 606 595 306.1 
(51.35) (-3.56) (10.63) 

conf. intvl 
f0.02 

0.24 
(3.70) 

ARFIMA (2, d, 0) (Negligible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.47 -1.00 -0.01 0.19 635 621 
(18.31) (-25.75) (-0.1) (8.17) 

conf. intvl 
kO.05 

-0.95 
(-13.43) 

ARFIMA (2, d, 2) (Sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.48 1.16 1.82 0.16 679 662 344.8 
(3.45) (1.05) (1.63) (11.66) 

conf. intvl 
f0.03 

0.43' 0.82 
(7.23) (0.73) 



- 39 - APPENDIX II 

Table 6. Former Socialist Federal Republic of Yugoslavia 

Money SUDD~Y 

ARFIMA (1, d, 0) (No sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

' 2.42 -0.5 0.23 453 446 228.6 
(6.00) (-5.21) (9.85) 

conf. intvl 
fO.13 

ARFIMA (1 d, 1) (Negligible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.41 -0.11 0.97 0.14 552 561 282.3 
(5.94) (-1.05) (33.4) (9.72) 

conf. intvl 
f0.13 

ARFIMA (2, d, 0) (Negligible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.48 -0.6 478 469 242.4 
(28.64) (-8.57) (Z7) 

conf. intvl 
zko.03 

0.38 
(5.73) 

ARFIMA (2, d, 1) (Little sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.47 -0.45 1.04 0.12 545 532 276.6 
(14.04) (-6.22) (37.36) (8.95) 

conf. intvl 
f0.06 

0.19 
(2.54) 
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Table 6. Former Socialist Federal Republic of Yugoslavia 

ARFIMA (0, d, 2) (Sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.38 1.26 0.13 543 533 244.6 
(5.85) (7.31) (8.29) 

conf. intvl 
f0.12 

0.24 
(1.46) 

ARFIMA (1, d, 2) (Sensitivity to initial conditions) 

d AR MA u/var AIC SIC HAX.LIK 

2.41 0.54 2.02 547 534 277.9 
(7.67) (4.58) (16.86) (E7) 

conf. intvl 
fO.10 

1.00 
(8.36) 

Price Level 

ARFIMA (1, d, 0) (Negligible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.43 -0.76 0.09 612.4 606.0 
(5.61) (-11.30) (9.83) 308.2 

conf. intvl 
fro.15 

ARFIMA (0, d, 1) (Sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.49 0.98 0.07 650 643 327.2 
(71.13) (81.56) (12.33) 

conf. intvl 
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Table 6. Former Socialist Federal Republic of Yugoslavia 

ARFIMA (2, d, 0) (Sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.15 -0.70 0.34 486 476 246.1 
(1.5) (-0.94) (18.45) 

conf. intvl 
f0.21 

-0.29 
(0.45) 

ARFIt4A (0, d, 2) (Little sensitivity to initial conditions) 

d AR MA a/var AIC SIC MAX.LIK 

2.48 1.29 0.06 666.6 656.9 277.9 
(17.00) (14.94) (9.97) 

conf. intvl 
f0.05 

0.31 
(3.50) 

ARFIMA (1, d, 2) (Negligible sensitivity to initial conditions) 

d AR MA u/var AIC SIC MAX.LIK 

2.15 -0.86 0.73 0.06 680 667 344.3 
(0.80) (11.30) (5.10) (9.65) 

conf. intvl 
f0.37 

-0.23 
(1.70) 
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Graph 2 
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Graph 4 
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Graph 5 
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Graph 6 
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Chart 1. Simulated Bubbles 
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