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1. INTR~DUCI~ON 

In this paper we study the properties of a test that determines whether two time series 
comove. The test computes a simple nonparametric statistic for “concordance,” which 
describes the proportion of time that the cycles of two series spend in the same phase. The 
concordance statistic was initially proposed by Harding and Pagan (1999), but they left the 
issue of the distributional properties of the statistic untouched. With no distribution theory, 
the statistic could only be used as an indicative measure of comovement rather than for 
making inferences. The contribution of this paper is that it establishes, using simulation 
methods, the distributional properties of the statistic and the size and power properties of 
this test. 

Section II contains a description of an algorithm used for dating business cycles 
and a definition of the concordance statistic. In Section III, the properties of the 
concordance statistic are examined, including critical values for using this statistic as a test 
of comovement. A comparison with two alternative measures of comovement is contained in 
Section IV. In Section V, the algorithm and statistics are applied to output data for selected 
major industrial countries. Finally, conclusions are presented in Section VI, 

II. MEASIJRINGCYCLES 

In order to utilize the concordance statistic, we need to date the peaks and troughs 
of cycles in the data. Business cycles are commonly described in two different ways: the 
“classical” cycle, which refers to peaks and troughs in the ZeveE of a series, and the “growth” 
cycle, which refers to peaks and troughs in the level of the detrended series. In this paper, we 
employ the classical measure. The distinction is important: when people refer to the NBER 
dates for booms and recessions in the United States, they are referring to the classical cycle 
characteristics of the data. However, when researchers (such as those of the real business 
cycle school) refer to the business cycle in filtered data, they are referring to a growth cycle. 
The distinction between levels and detrended data is crucial: a recession can only occur in 
a classical cycle if growth is negative, while in a growth cycle, a recession is a phase where 
actual output is below the trend.’ 

Dating classical cycles is a nontrivial exercise. This is one possible reason why 
modern “business cycle” analysis has segued away from the original classical sense of Burns 
and Mitchell (1946) towards the use of simple detrending methods such as the HP filter. One 
conventional rule defines a classical recession as two consecutive periods of negative growth. 
However, the business cycle dates published by the NBER are the result of considerable 
judgement. Attempts have to be made to filter out false turning points from noisy data. 

’ For tirther discussion, see Pagan (1997a) 
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Nonetheless, an algorithm for monthly data set out by Bry and Boschan (1971) of the. 
NBER is a good approximation to the judgmental procedure2 The algorithm proceeds in 
three basic steps. First, a potential set of peaks and troughs is determined by the application 
of a turning point rule. This defines a local peak in the time series X, as occurring at time t 
whenever (xl > x,*~ > , k = 1,. . . ,K, while a local trough occurs at time t whenever {x1 c xter > , 
k =l, . . . ,K. The second step enforces the condition that peaks and troughs must alternate. 
Thirdly, the peaks and troughs are revised, or “censored”, according a range of criteria. 
Under these conditions, a complete-cycle must be at least fifteen months long, while all 
phases must be at least six months. There are further rules designed to avoid spurious cycle 
dating at the ends of series. 

The NBER rules were derived on the assumption that data would be at monthly 
frequency. One issue to be resolved, therefore, is how to apply these rules to quarterly data. 
Where K is generally set to five for monthly data, it is set here to two for quarterly data. As 
per the NBER convention, cycles are at least fifteen months or five quarters long. 

When peaks and troughs have been dated-by using the Bry-Boschan algorithm 
for example-we can compute some basic but informative statistics. First, we document the 
average duration and amplitude of the phases in individual series. A comparison of the time 
plots of the series and their peaks and troughs allows us to quickly assess whether recent 
cycles are in some way unusual, or whether there is a pattern in the evolution of the cycles. 
We also employ a test for regular periodic behavior in the cycles. Second, we are (more) 
interested in how the cyclical patterns of the series compare to each other. To facilitate this, 
we make use of the concordance statistic originally proposed by Harding and Pagan (1999). 
This is a simple nonparametric statistic that measures the proportion of time two series, xi 
and xj , are in the same state. Let Cs;, 1 be a series taking the value unity when the series xi 
is in expansion and zero when it is in a contraction. Define the series & 1 in the same way. 
The degree of concordance is then 

where T is the sample size. 

This approach accords us several technical advantages. First, the binary indicator 
series S, are, by construction, stationary, allowing us to easily apply any number of 
statistical measures. Second, the Bry and Boschan algorithm and the concordance statistic are 

2 This algorithm has been used by King and Plosser (1994), Watson (1994) and Cashin, 
McDermott and Scott (1999a). 
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entirely nonparametric. This means that the dating will be almost entirely independent 
of the sample used, which is not the case in “global” parametric growth cycle models3 

In this section, we present the results of Monte Carlo simulations that examine the 
properties of this statistic. As a proportion, the values that the expression (1) may take are 
clearly bounded between zero and one. Faced with an empirical result of, say, 0.7, it is 
natural to assume that this is a large number relative to zero. However, there are factors 
that mean that the appropriate distribution of the statistic may be centered at 0.5 or higher. 

Consider a concordance statistic evaluated over two series, x, and X, , when both 
series follow a Brownian motion. In this case there is an equal chance that the series are in 
or out of phase with each other, and the distribution of the statistic will be symmetric around 
0.5. If the two series x, and X, were independent, then the variance of the concordance 
statistic would be 1/[4(T - l)], where T is the sample size of x, and x, . However, since the 
Bry-Boschan algorithm involves censoring, then independence cannot be assumed. The 
censoring operation makes it difficult to produce an exact analytical solution to the 
distribution, so we use Monte Carlo simulation to generate the distribution of the 
concordance statistic. The distribution of the concordance statistic when the two series 
follow a Brownian motion is compared to the normal distribution in Figure 1. Even for this 
simple case with no drift, the distribution of the statistic deviates noticeably from the normal 
distribution. An increase in the minimum phase and the minimum cycle in the censoring 
rule increases the variance and thickness of the tails. 

Now consider the case when x1 and X, are Brownian motion with drift. The 
existence of a positive growth rate will shift the center of the distribution to the right, with 
the result that a large area of the distribution may be confined to the region just to the left 
of one. The skewness in the distribution caused by the drift can be seen in Figure 2. 

3 The exception comes about because of the censoring rules, To the extent that these affect 
the dating of peaks or troughs at the end of the series, an extended sample may result in 
slightly different datings. This reflects the “pattern-recognition” nature of the algorithm: 
more data mean that there will be more information with which to decide whether a local 
peak or trough is a cycle peak. A peak or trough which was not dated in the smaller sample 
may therefore be dated in the extended sample (note, however, that the reverse does not 
apply). 
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Figure 1. Distribution of Concordance Statistic, Zero Drift Case 
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Notes: Distribution computed from draws of two sets of 100 observations, each generated 
independently from a Brownian motion. Censoring rules: minimum cycle 5 periods, 
minimum phase 2 periods. 



-7- 

Figure 2. Distribution of Concordance Statistic, Positive Drift Case 
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In the case where x1 and x2 are random walks with no drift, the variance of the 
innovations has no effect on the distribution. The intuition is simple: concordance 
summarizes the results of the turning points in x1 and x2, but not the amplitude of the 
swings. However, this is not the case when one or both of the series has drift: in that case 
the concordance will depend on how strong the trend is relative to the variance in the series. 

Fortunately, when the two series x1 and x2 have different growth rates, the amount 
by which the distribution shifts depends solely oln the smallest growth rate. An intuition for. 
this can be gleaned from thinking of a hypothetical extreme case, where one series is drawn 
from a random walk with no drift and another from a random walk with infinite drift. We 
would expect the first series to be in each phase close to half the time, whereas the second 
would be in a permanent state of expansion. Nonetheless, the concordance between the two 
series would be roughly half; it takes drift common to both series for the expectation of the 
statistic to rise above 0.5. 

This allows us some simplification. To calculate critical values, we assume that 
economic data can be well described by a random walk with drift. We regard this as a 
reasonable and sensible characterization. First, it is consistent with the well-known literature 
going back to Nelson and Plosser (1982) that identifies random walks in many economic 
time series. To this we add the stylized fact that many series do not exhibit duration 
dependence, so that there is no evidence from regular periodic behavior to support the notion 
of mean reversion (see Section V). Second, even if a time series does not have a unit root, the 
distinction is likely to be unanswerable on the basis of finite observations. For our purposes, 
the simple random walk with drift model is likely to be a good approximation to the 
properties of the data.4 

Under this assumption, critical values for the concordance statistic can be simulated 
as a function of two parameters, the sample size, T, and the ratio of the driR, p, to the 
standard error, cr . We confirmed this by Monte Carlo simulation.’ The fact that it is only the 

* For ILuther discussion, see Pagan (1997b). Pagan (1999) and Harding and Pagan (1999) 
show that the random walk with drift model performs well compared to more complicated 
models (such as models with GARCH errors and regime-switching) for, respectively, output 
and stock price data. 

5 Two experiments were run. In the first, data from a random walk with zero drift were 
simulated so as to generate a distribution for the concordance statistic. The standard error 
of the data generating process was scaled up and down and the distribution re-generated. In 
the second experiment, data were generated ffom a random walk with positive drift and both 
p and (r scaled up and down so as to maintain the same ,u/o ratio. Aside from minor 
numerical simulation error, the resulting distributions within the two experiments were 
identical. Tables of percentiles are available on request from the authors. 
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ratio p/a that matters reflects the notion that classical cycles can be summarized by their 
“triangular” properties- the amplitude of the cycle from peak to trough or trough to peak 
relative to the distance covered (that is, time elapsed). Equivalently, the parameters p and 
CT summarize the probability of switching from one state to another-from a contraction 
to an expansion, for example. That is, if Alogx, was Nb,cr2) then Pr(S, = 1) would be 
a function of p/a exclusively (see Pagan (1999), p. 14). 

Instead of simply providing tables of critical values for a few specific sample sizes 
and p/a ratios, we estimate response surface regressions. These regressions have the 
advantages of both smoothing the simulation results and providing interpolated values for 
those critical values not provided by the original simulations, The regressions relate the 
1 percent, 5 percent, and 10 percent upper-tail critical values for the concordance test 
statistic to the sample size and drift: standard error ratio.6 Simulation experiments of 10,000 
replications were conducted for a single value of T and a single value of p/a , The 1 percent, 
5 percent, and 10 percent empirical quantiles for these data were then calculated, and each 
of these became a single observation in the response surface regression. 

Atter some experimentation, the following functional form for the response surface 
regression was found to work well: 

C,(p)= l+exp 
[ t 

-p1.Tb-“2 -p, .(gk -A .(;);)I’ +Ek (2) 

where Ck@) denotes thep percent quantile estimate for the @ simulation experiment, Tk 
denotes the sample size for that experiment, (,u/u)~ denotes the drift:standard error ratio for 
that experiment, the /?s are parameters to be estimated, and E, is the residual The form of the 
regression constrains the asymptotic critical value to 0.5 when there is zero drift. The 
parameters determine the shape of the response surface for finite T and nonzero drift. 

As noted, the concordance statistic is bounded by construction in the range [0, 11, 
and in simulation the values tend to “curl” asymptotically toward 1 as ,u/cr increases and 
T decreases. This flattening can be seen in Figure 3a, which shows a surface plot of the naive 
estimates of the critical values from the Monte Carlo simulation. This explains the use of the 
nonlinear logit function, which both provides a better fit and ensures that the smoothed 

6 We assume here that we are only interested in the existence of in-phase behavior and 
therefore in rejecting the null hypothesis that the two series are in phase by chance. The left 
tail is therefore not of any interest. We restricted ourselves to calculating the 1, 5 percent and 
10 percent quantiles, because most hypothesis tests are conducted at one of 1 percent, 
5 percent, or 10 percent significance levels. 
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Figure 3a. Response Surfaces of Naive 5 Percent Critical 
Values of Concordance Test 

Source: Authors’ calculations. 
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response surface remains within [O,l]. The regression also smoothes out the surface: even 
after a simulation of 10,000 repetitions per point on the surface, the naive surface is still very 
uneven. In empirical situations where we can expect high drift rates, this simulation noise 
could be severely detrimental to hypothesis testing. Hence the smoothed critical values 
(seen in Figure 3b) can be expected to be more accurate, as well as more convenient.’ 

The results from estimating the response surface regressions using maximum 
likelihood are shown in Table l.* The influence of the sample size variable in the regression 
is strong, indicating the value of using finite sample distributional results. The estimated 
coefftcients on the polynomial in ,~/a determine the final shape of the response surface. 
To illustrate the use of the response surface, if the user were dealing with a sample size 
of 155 and a minimum drift:standard error ratio of 0.32, the 5 percent significance level 

would be [l + exp(- 4.78 I(&)- 0.8.0.32 - 1.23 . (O.32)2)i1 = 0.68 

Table 1. Response Surface Parameters for the 1, 5, and 10 Percent Significance 
Levels of the Concordance Statistic 

Significance level 
10 percent 3.42 0.92 1.02 

(1.16) (0.41) (0.60) 

5 percent 4.78 0.80 1.23 
(0.96) (0.35) (0.54) 

1 percent 7.18 0.67 1.57 
(1.35) (0.51) (0.89) 

Notes: Standard errors in parentheses. 

7 For a discussion of response surfaces, see Chapter 21 of Davidson and MacKinnon (1993). 

* The starting values are taken from the results of GLS regressions of the three sets of critical 
values on a constant., T-‘j2, p/a, and b/o>‘. Th e weights for feasible GLS estimation 
were computed using the inverse of the fitted values of the auxiliary regression of the 
squared OLS residuals on the response surface regressors. The mean squared errors from the 
maximum likelihood estimations are 3 to 4 times smaller than the mean squared errors from 
the OLS or GLS estimations. 
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To evaluate the usefulness of the concordance test we examine how often the test 
rejects the null hypothesis as the correlation between the innovation in the random walks 
increase. This is akin to examining the power of the test as the shocks to the two processes 
become more and more similar. The calculation of the critical values was made under the 
assumption that the innovations for the two series, e, and e, , are completely independent, 
When e, and e, are nonindependent, we would hope that the statistic would correctly 
distinguish this from the independent case, and the calculated concordance value would 
be reliably greater than the relevant.critical value. At the extreme, when the two series are 
perfectly correlated, we expect that the test would diagnose perfect concordance. 

We examine the power properties of the test by simulating two dependent random 
walks9 Figure 4 shows the proportion of rejections as a function of p (the correlation 
between the innovations in the random walk series). We observe that the probability of 
rejecting the hypothesis of no concordance increases in the correlation, p , between e, and 
e2 (this simulation is based on the 5 percent significance level calculated earlier). For a given 
sample size T and a given ,~/a, the curves show the increase in the power of the test as the 
correlation between e, and e, increases. We also observe that for time series of length 
typical for economic data we require a high degree of correlation in the underlying shocks in 
order to have a high probability of rejecting no concordance. The power of the test increases 
sharply as the sample size grows. 

One further way to examine the accuracy of the concordance test is to examine the 
size of the test under different assumptions. Specifically, we examine the robustness of the 
preceding calculation to nonnormality in the innovations of the random walk series. This 
exercise is then repeated 10,000 times. The number of times the test rejects the hypothesis 
of no concordance between two independent random walks should remain at 500 when using 
the 5 percent significance level. The entries in Table 2 are under two headings: “gap” refers 
to the distance between the 5 percent critical value calculated under the assumption of 
normally-distributed innovations and the 5 percent value calculated with the alternative 
distribution, and “proportion” describes the fraction of times that the test rejects the null 
hypothesis. 

’ The errors in the random walks were generated using a bivariate normal distribution with 
a correlation of p . 
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Table 2. Size of Concordance Test Under Different Distributional Assumptions 

t 10 

Distribution 
t3 -xi 

2 
x4 

0.0 
Gap Proportion Gap 
0.00 0.050 0.00 

(with mean zero) (with mean zero) 
Proportion Gap Proportion Gap Proportion 

0.050 0.02 0.080 0.03 0.084 
0.1 0.00 0.046 O.bl 0.059 0.05 0.144 -0.01 0.037 
0.2 0.00 0.045 0.03 0.088 0.06 0.175 -0.03 0.015. 
0.3 0.01 0.056 0.06 0.181 0.07 0.222 -0.05 0.008 
0.4 0.01 0.064 0.08 0.256 0.07 0.222 -0.05 0.006 
0.5 0.01 0.056 0.07 0.256 0.05 0.166 -0.05 0.005 
0.6 0.02 0.075 0.08 0.284 0.05 0.168 -0.02 0.017 
0.7 0.01 0.068 0.07 0.243 0.03 0.116 -0.01 0.030 
0.8 0.01 0.065 0.05 0.203 0.02 0.083 0.01 0.071 
0.9 0.00 0.047 0.03 0.138 0.00 0.049 0.02 0.106 
1.0 0.01 0.061 0.03 0.127 0.01 0.050 0.04 0.207 

Notes: Results were computed using 10,000 Monte Carlo draws with a sample size of T=lOO and a 
nominal size of 0.05. For each alternative distribution, the innovations are scaled such that their 
variance is the same as the variance of the normally-distributed innovations used to generate the 
critical values. “Gap” refers to the distance between the 5 percent critical value calculated under the 
assumption of normally-distributed innovations and the 5 percent value calculated with the alternative 
distribution. “Proportion” refers to the proportion of tune the null hypothesis is rejected, that is, the 
actual size. 

The distributions considered were the t ‘,, , t, , and xi (shifted to have mean zero). 

The t distributions exhibit moderately and extremely thick tails, respectively. For the x2 
distribution, we also reversed the signs on the demeaned innovations so that we have both 
right- and left-skewed distributed innovations. For each alternative distribution, the 
innovations are scaled such that their variance is the same as the variance of the normally- 
distributed innovations used to generate the critical values (see Figure 5)” 

The results indicate that the test is sensitive to nonnormality of the innovations. In all 
cases, there are interesting interactions with the drift parameter that explain the observed size 
distortions. 

lo For the tk distribution, the appropriate resealing is 

the resealing is (o&%)-l . 

For the xi distribution, 
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/ 

Figure 4. Power of Concordance Statistic at 5 Percent Significance Level 
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Figure 5. Distributions Used for Site Testing 
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The t,, distribution exhibits mildly leptokurtic behavior. The numbers in the third 
column are erratic and appear within the range of simulation error, which would lead us to 
believe that there is no appreciable size distortion. Nonetheless, while the effect is not large, 
there is some sign of size distortion corresponding with the middle range of ,u/a values, 
where there is some tendency to overreject the null for values around p/a = 0.5. This effect 
can also be seen in the “gap” between the critical values and the actual point where the true 
5 percent of rejections occurs. 

This effect becomes quite clear with the t, distribution. The t, has fatter tails than 
the t,, , and this leads to a large rightwards “bulge” of the gap associated with the midrange 
of p/o values. This is the case even though the gaps look small, which is an indication of 
the way in which the distribution of the statistic becomes more left skewed as the drift 
increases. 

For the t distributions, there is no impact on the critical value at zero drift. However, 
drift does matter as p/a rises: when the innovations are scaled to have the same variance as 
in the normal case, this concentrates more draws in a range close to zero, therefore lowering 
the typical magnitude of a given shock. This means that the drift is relatively more dominant; 
all else being equal, we will see longer phases and cycles with this distribution. The point 
that gives a true 5 percent rejection rate will be greater than the critical values calculated 
using the normal distribution. The test therefore over-rejects the null hypothesis of no 
concordance. However, as p rises, concordances are pushed towards upper bound of unity. 
The gap between the 5 percent critical value calculated under the assumption of normality 
and the 5 percent values calculated with the alternative assumption closes, and we see less 
size distortion. For example, as we move down the fifth column of Table 2, we see that the 
proportion of rejections rises steadily, reaching a maximum of 28 percent when the p/a 
ratio is 0.6. The distortion then declines as the ,u/a ratio rises to 1.0. 

The xi distribution creates a distortion even without any drift. This is because it is 
skewed: in the case of the “negative” x,’ , the large resealing required to make the variances 
equal brings most of the innovations into a range that is positive but close to zero. The effect 
is exactly as before. In the case of the “positive” xi distribution, the effect is reversed: the 
effective p/a ratio is lowered and we observe underrejection in the midrange of p/a 
values. 
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IV. ALTERNATNEMEASURESOFC~MOVEMENT 

Our measure of comovement is not unique, and deserves comparison with two other 
measures that have been used: conformity and correlation. 

King and Glosser (1994) discuss a quantitative device, developed by Burns and 
Mitchell (1946), for assessing the degree to which a series comoves with the reference 
business cycle. This device, whichthey called conformity, is similar to our measure of 
concordance in that it aims to measure how much one series move with another; in their case 
one of the series is always the reference cycle. 

Conformity between two series is determined by their relative behavior. One series is 
taken to be a reference series; the dates of peaks and troughs for the analysis are determined 
from this series. A series is said to conform to the reference series if it expands and contracts 
at broadly the same time as the reference series. That is, if during an expansion phase of the 
reference series the series grows at a higher rate than during the period of the contraction 
phase that follows, the whole cycle is assigned a value of 1. If, on the other hand, the series 
grows at a higher rate during the reference series contraction period than during the reference 
series expansion period, a value of -1 is assigned to the whole cycle. The degree of 
conformity for the series is then given by the average of ones and minus ones (multiplied 
by 100). 

The conformity measure is therefore somewhat difficult to interpret.” The series and 
the reference series may conform perfectly, even if, say, the series is in an expansion phase 
while the reference series is in a contraction phase, as long as the series’ expansion during 
the reference series contraction phase is less than its expansion during the reference series 
expansion phase. Thus, conformity and concordance clearly differ with respect to what they 
measure; which metric one should use depends on the question at hand. 

One obvious reaction to our discussion of the concordance technique might be: 
“Why not simply calculate correlations?” There are many responses that can be given to this 
question. First, the two series would need to be rendered stationary. However, determining 
whether a time series is trend or difference stationary can be difficult given the low power 
of unit root tests in small samples. l2 Nor is it safe to assume differencing is required; over- 
differencing can be as troublesome as underdifferencing. 

l1 Furthermore, the distributional properties of the conformity statistic are unknown. 

l2 See De Jong et al. (1992). 
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We prefer to focus on an alternative issue. Imagine two random series. Following the 
discussion in Section III, we would expect the concordance-statistic for these two series to 
be near 0.5. We would also expect their correlation of the stationary forms of the series to 
be zero. However, the correlation statistic is easily affected by particular, single events in 
the time series, which are arguably irrelevant to inferences of comovement. 

To be more precise, consider an example with two independent random walks with 
zero drift. Figure 6 depicts such an example, where the variances of the innovations have 
been chosen arbitrarily in order to generate series which look like typical economic series. 
Allowing for some high frequency noise, the series exhibit periods of general expansion 
and contraction, which appear to be roughly periodic. The Bry-Boschan algorithm has been 
applied to the series with a minimum phase rule of two periods and a minimum cycle rule 
of five periods, and the peaks and troughs marked as solid and dashed lines respectively. 
The “bar code” at the bottom of the Figure shows when the two series are in the same phase 
according to the dating-that is, when the two series are in contraction or expansion at the 
same time, the bar code is solid, and blank when out of phase. It can be seen that the 
amplitudes of swings do not matter under our definition: if the series are in an expansion at 
the same time, then they share the same phase, even if the growth rates of the expansion are 
very different. l3 The concordance statistic is simply the proportion of black (or white) over 
the whole area of the bar graph. In the case of these two series, the concordance is 
exactly 0.5. 

We will assume that the order of integration is known, so that in order to avoid 
spurious correlation, the series have been rendered stationary by first differencing. As 
expected, the correlation statistic is close to zero (0.12) and not significant.14 

Figure 7 shows the same two series with a step function added; the jump point is 
exactly halfway through both series. The datings picked by the Bry-Boschan algorithm 
remain exactly as before. Accordingly, the concordance statistic is the same, and has not 
been affected by the increased amplitude in one of the phases. However, the correlation is 
now large (0.60) and clearly significant, even though the two series are otherwise random. 
This simply reflects the fact that correlation, as scaled covariance, mixes the concepts of 
duration and amplitude into one measure, The statistic is therefore not easily interpreted: a 
high number may be the result of significant comovement through time, or, as here, the result 
of a single large event that is common to the two series. 

l3 In this way, this measure of comovement is firmly associated with the classical definition 
of the business cycle rather than the growth cycle measure. 

l4 Since the test is two-sided, with a sample of 100 observations, the 95 percent confidence 
level is 1.96/fi = 0.20 . 
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Figure 6. Peaks and Troughs of Two Random Waiks (Top and Middle Panels) 
with Phase Indicator (Bottom Panel) 
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Source: Authors’ calculations. 

Notes: Peaks are denoted by solid lines; troughs are denoted by dashed lines. Periods from 
peaks to troughs are contractions, while periods from troughs to peaks are expansions. The 
“bar code” at the bottom of the Figure shows when the two series are in the same phase 
according to the dating-that is, when the two series are in contraction or expansion at the 
same time, the bar code is solid, and blank when out of phase. 
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Figure 7. Peaks and Troughs of Two Random Walks with Common Break 
(Top and Middle Panels) with Phase Indicator (Bottom Panel) 
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Source: Authors’ calculations. 

Notes: Peaks are denoted by solid lines; troughs are denoted by dashed lines. Periods from 
peaks to troughs are contractions, while periods from troughs to peaks are expansions. The 
“bar code” at the bottom of the Figure shows when the two series are in the same phase 
according to the dating-that is, when the two series are in contraction or expansion at the 
same time, the bar code is solid, and blank when out of phase. 
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It is theoretically possible to correct this problem with the use of dummy variables 
(see Perron (1989)), but the break point is typically unknown. Noting this problem, Zivot and 
Andrews (1992) suggest a modified procedure, but nonetheless both methods allow for only 
one possible jump point. In practice, therefore, correcting with dummy variables is highly 
problematic. 

We avoid such problems by construction. If we define comovement in terms of the 
coincidence of phases, the concordance measure is both more appropriate and more easily 
interpretable. Given that regime shifts are a stylised fact of economic series, the concordance 
measure avoids the possibility of being mislead by correlations that have been highly 
affected by the amplitudes of single events, when the series are random and otherwise 
independent. 

v. &PLICA’IlON’S 

To illustrate the use of the concordance statistic, we apply the procedures discussed 
above to the logarithms of real output obtained from the IMF International Financial 
Statistics database for six selected major industrial countries: Canada, Germany, Italy, Japan, 
United Kingdom and the United States. The data for the six series are available from 1960: 1 
to 1999:2, affording us a suffkiently long data span to have a good impression of properties 
of the average classical cycle for each. The dating procedure as described in Section II is 
applied and the series plotted in Figure 8. As in Figures 6 and 7, solid vertical lines indicate 
peaks while dotted vertical lines indicate troughs. 

Several features are immediately apparent from these plots. First, they confirm the 
stylized fact that classical output cycles are asymmetric: expansions are generally longer than 
contractions. Second, the timing of the recessions in the early 1980s and early 1990s is 
similar (but not identical) for all countries except Japan.16 

I5 See also Cashin, McDermott and Scott (1999b) for an application of the concordance 
statistic in examining comovement in world commodity prices. 

l6 The plot of the data for Japan is notable for the extremely long expansion dating from 
1960: 1 to 1992: 1. Within this period there are two points at which growth was negative, one 
at 1974: 1 and the other at 1974:4. However, because these periods of negative growth each 
last only one quarter, under the NBER dating rule they are not counted as a recession. 



- 23 - 

Figure 8, Datings for Peaks and Troughs, Selected Major Industrial 
Country Output Series, 1960: l-1999:2 

(Logarithm of real GDP) 
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Sources: IMF, IFS and Authors’ calculations 

Germany 

Japan 

United Kingdom 

Notes: Peaks are denoted by solid lines; troughs are denoted by dashed lines. Periods from 
peaks to troughs are contractions, while periods from troughs to peaks are expansions. 
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Once the dates of peaks and troughs have been determined, summary statistics can be 
calculated (see Table 3). We first report the average duration of expansions and contractions. 
For the six countries in our sample, the average contraction lasts around 3 to 4 quarters while 
the average expansion ranges fi-om 11.5 quarters in the United Kingdom to 48 quarters in 
Japan. The average rise (decline) in an expansion (contraction) is shown by the amplitude 
measure. This measure indicates that in the major industrial countries contractions typically 
reduce real output by about 2 percent, while expansions increase real output by about 
20 percent. However, a striking feature in these results is that the per quarter amplitudes are 
quite similar: around 1 percent per quarter in expansions, and % percent in contractions. 

Table 3. Descriptive Statistics for Selected Major Industrial Country Output Series 

Contractions Expansions 
Duration knplitude Amplitude Brain- Duration Amplitude Amplitude Brain- 

per quarter shapim P” Q= Shapiro 

Ctlllada 3.50 -2.50 -0.59 
test 
0.66 26.50 26.88 1.17 

test 
-1.10 

e-Y 4.00 -2.05 -0.61 1.92 17.50 16.60 0.95 0.95 
Italy 3.00 -1.74 -0.56 1.18 18.33 16.01 0.89 1.02 
Japan 3.67 -1.76 -0.39 0.77 48.00 31.67 0.65 0.77 
United Kingdom. 3.44 -2.07 -0.57 2.66 I/ 11.50 9.99 1.03 1.17 
United States 3.20 -2.37 -0.75 0.50 21.00 19.32 0.94 -0.73 

Notes: For each of the two phases (expansions and contractions), and for each of the six series, four results are 
presented. First, the average duration (in quarters) of the phase. Second, the average amplitude of the aggregate 
phase movement (in percentage changes). Third, the average amplitude per quarter (amplitude divided by 
duration). The fourth statistic (E3rai.wShapiro test) is an e xankation of duration dependence. The null 
hypothesis of the Brain-Shapiro statistic is that the probability of exiting a phase is independent of the length of 
time a series has been in that phase. Using a 5 percent critical value for a two-tailed test, any result greater than 
1.96 (in absolute value) indicates duration dependence in the output series. In the case of Japan a subjective 
judgement was made to count the period from 1960: 1 to 1992:2 as a complete trough-to-peak expansion. 

l! Significant at the 1 percent level 

Following Diebold and Rudebusch (1990), the table also presents the Brain-Shapiro 
statistic for duration dependence, which tests whether the probability that an expansion or 
contraction will end changes as the expansion or contraction continues. The statistic has an 
asymptotically standard normal distribution and can be interpreted like a t-statistic for 
significant dependence in duration. The overwhelming result is that there is no duration 
dependence in expansions and significant duration dependence in contractions only for the 
United Kingdom. Hence, while the recent expansion phase in United States output is clearly 
exceptional- some 33 quarters against an average of 21 quarters-there is no evidence from 
past history that this will have increased the probability of switching to a contractionary 
phase. We take this as further evidence that the random walk with drift model is a good 
characterization of the data. 



- 25 - 

Table 4 presents concordance statistics. The if’ cell represents the concordance 
between the ia and$ countries. The numbers along the diagonal are therefore unity. The 
concordance numbers are very high for all 15 permutations-all of the series spend at least 
two thirds of the time in the same phase as each other. The highest concordance of 0.93 is 
recorded for Canada and the United States, and this is significant at the 1 percent level. This 
indicates that the two countries’ business cycles are in phase most of the time. Given very 
strong trade links and their close proximity to each other, this is to be expected. 

Table 4. Concordance Statistics for Selected Major Industrial Country Output Series 

Canada 

-my 
Italy 

Japan 

United Kingdom 
united states 

Canada 

1 .oa 

Germany 

0.79 11 

1.00 

Italy 

0.73 

0.75 21 
1.00 

Japan 
0.81 

0.78 21 
0.84 2/ 

1.00 

United Kingdom United States 

0.75 31 a.93 II 

0.75 21 0.82 11 
0.68 0.75 

0.73 0.80 

1.00 0.78 21 
1.00 

11 Significant at the 1 level percent 
21 Significant at the 5 level percent 
31 Significant at the 10 level percent 

It is perhaps more surprising, however, that for all of the combinations only three 
statistics are significant at the 1 percent significance level, with 8 statistics significant at the 
5 percent level. This is because of trend growth in all of the series, which is documented, in 
the first column of Table 5, The estimated drift:standard error ratio ranges from 0.50 for 
Germany to 1.18 for Japan. This highlights the need to use hypothesis testing procedures 
rather than relying on the point estimate of concordance; using the measure of concordance 
without an understanding of its distributional properties may lead to misleading conclusions. 
For example, the concordance between Canada and Germany (0.79) is significant at the 
1 percent level, while the concordance between Canada and Japan (0.8 1) is not significant 
even at the 10 percent level. 

Table 5 also reports statistics for excess skewness and kurtosis. The null of no excess 
skewness is rejected for 3 out of 6 countries, while the null of no excess kurtosis is rejected 
for 4 out of 6 countries. Our test for concordance will therefore suffer from size distortion for 
many of the combinations in Table 4. Further, the range of ~/CT ratios in the data means that 
the size distortion will be relatively large. The excess kurtosis will lead us to reject the null 
of no concordance too many times. However, the data for Germany, Italy and the United 
Kingdom the data are left skewed, which works in the opposite direction; this may well offset 
the size distortion. 
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Table 5. Descriptive Statistics for Selected Major Industrial Country Output Series 

Skewness Kurtosis 

Canada 0.92 0.25 0.01 

G-Y 0.50 7.03 I/ 19.76 II 

Italy 0.7i 8.11 l! 22.13 11 

Japan 1.18 0.50 0.79 

United Kingdom 0.54 2.48 l! 6.83 11 

united states 0.86 -1.47 2.83 11 

Notes: ‘Thee results are presented. The first ahmn repons the ratio of the tirift to the stanbrd enor from an 
estimated random walk with drift model, where Axl is N(J.J, a). The second and third columns report the 
Kiefer-Salmon statistics (as reported in Davidson and MacKinnon, 1993, pp.56849) for skewness and kurtosis, 
respectively. The statistics are distributed as N(O,l) . 

l/ Significant at the 1 percent level 

Table 6. Correlation Statistics for Selected Major Industrial Country Output Series 

CCilXUb 

Canada 

1.00 

-my 

0.01 

Italy 

0.19 21 

Japan 

0.22 l/ 

United Kingdom Unit& States 

0.17 21 0.51 l! 

Gel-fllZill~ 1.00 0.16 21 0.21 l/ 0.20 l! 0.01 

Italy 1.00 0.36 l! 0.02 0.20 l/ 

Japan 1.00 0.21 11 0.18 2f 

United Kingdom 1.00 0.26 1/ 

United States 1.00 

11 Significant at the 1 percent level 
2/ Significant at the 5 percent level 



- 27 - 

We contrast these findings with correlation statistics for the first differences of the 
output series, reported in Table 6, Significant correlation at the 1 percent level is recorded for 
8 out of the 15 combinations and 12 out of the 15 at the 5 percent level. It is not the case, 
however, that the concordance test is simply “harder” than the correlation test. Quite 
different conclusions about comovement could be reached from the two measures. For 
example, an examination of the plots for German and United States output would probably 
lead most to conclude that the series generally move together, Indeed, as seen in Figure 9, the 
phase indicator for the two series shows that the concordance measure corroborates this 
impression, with 130 out of 158 periods spent in the same phase. As noted, the concordance 
statistic for these two countries is not merely large but significant at the 1 percent level, 
despite the obvious occurrence of trend growth in both series. In stark contrast, however, the 
correlation statistic is 0.01 and statistically indistinguishable from zero. This comes from a 
sample covariance statistic that is also close to zero. However, it would seem difficult to 
assert, on this basis, that the two series we see in Figure 9 are orthogonal to each other. 

We hesitate to make comments on the evidence for or against the existence of an 
international business cycle from what is intended to be merely an illustrative exercise of the 
concordance statistic. While the concordance statistic is nonparametric, inference is 
unavoidably parametric. A more thorough analysis would therefore have to consider the 
impact of differing subsamples on inference. Nonnormality of the estimated residuals would 
clearly have to be addressed. Nonetheless, while significant concordance is found in the case 
where it would be most expected-the neighboring economies of Canada and the United 
States, for example-it is quite surprising how little evidence there is for widespread 
coincidence of expansions and contractions across these major industrial countries, 

Vi. CONCLUSIONS 

In this paper we show that the concordance test is a useful means to gauge whether 
two series comove; that is, to what extent they are typically together in an expansionary or 
contractionary phase. We have also shown how to infer the significance of the statistic 
against the null hypothesis that the concordance is the result of pure chance. For this purpose, 
we utilized Monte Carlo simulations and response surfaces. These regressions are an 
effective means of summarizing results from such simulations, because they smooth and 
interpolate critical values for all sample sizes. 

The properties of the concordance test were examined in two ways: first, by using 
simulations to calculate size distortions when the innovations are nonnormal, and second, by 
using simulations to calculate power as a function of the correlation between the innovations. 
The simulations show the test is somewhat sensitive to nonnormal innovations, so that it is 
important to conduct diagnostic checks on estimated innovations. The test has reasonable 
power properties when the correlation between the innovations is high and improves 
substantially as the sample size grows. 
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Figure 9. Datings of Peaks and Troughs for Germany (Top Panel), United States 
(Middle Panel), and Phase Indicator (Bottom Panel), 1960: l-1999:2 

(Logarithm of real GDP) 

Sources: IMF, IFS and Authors’ calculations. 

Notes: Peaks are denoted by solid lines; troughs are denoted by dashed lines. Periods from 
peaks to troughs are contractions, while periods from troughs to peaks are expansions. The 
“bar code” at the bottom of the Figure shows when the two series are in the same phase 
according to the dating-that is, when the two series are in contraction or expansion at the 
same time, the bar code is solid and blank when out of phase. 
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As an empirical illustration, the Bry-Boschan algorithm and the concordance statistic 
were applied to output data from selected major industrial countries. The algorithm and 
concordance tests are easy to apply systematically to large data sets. In the case of the small 
number of output data series considered here, it proved a good way to compare business 
cycles across countries. Overall, we find the concordance statistic to have the appealing 
virtue that it means what it says-the statistic relates well to our intuitive impressions about 
series “moving together”, and can be literally read as a measure of the extent of comovement. 
We therefore hope that it will form a useful addition to the applied economist’s toolkit. 
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