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I.    INTRODUCTION 

A suggested approach to oil markets analysis is to treat oil as an asset, besides its role as a 
commodity, and to recognize the influence of derivatives markets on oil price behavior. 
Restricting attention to fundamentals in modeling and forecasting short-term oil prices would 
be unrealistic and would omit a key aspect of oil markets, which is the asset role of crude oil 
and the preponderant presence of financial investors, other than the traditional operators, who 
are the producers and the consumers, in the markets. Sizable demand for futures contracts by 
institutional investors and speculative activity by hedge funds and commercial entities could 
exert pressure on prices and cause volatility of oil futures prices to rise to excessive levels. 
Similarly, in other commodity and currency markets, high volatility would stimulate 
speculation, which in turn contributes to higher volatility and to volatility clustering. 
 
It is well known that asset markets can experience frequent jumps of different magnitudes 
and can overshoot or undershoot their equilibrium. Yet policymakers and central bankers 
would like to monitor regularly these markets, gauge the market sentiment, and forecast price 
distributions. They turn to derivatives markets, and particularly to options prices, for such 
forecasts as these markets account for both the consumption and investment aspects of an 
asset. The purpose of this paper is therefore to model asset prices’ uncertainty and option 
pricing in the context of Levy processes, which are capable of handling discontinuities and 
are known to behave properly under time aggregation. 
 
Levy processes have gained considerable interest in financial modeling as they were found to 
overcome many of the shortcomings associated with the Black-Scholes’ model (1973) and to 
offer a more general tool for modeling uncertainty in asset prices. They are seen as a random 
walk in continuous time with jumps occurring at random times. They include the Brownian 
motion and the Poisson processes as particular cases. Their general form has a drift, a 
Brownian motion, and a compound Poisson process which distinguishes small size jumps 
and large jumps. The probability distributions associated with Levy processes are infinitely 
divisible and offer more flexibility for fitting financial data, particularly high-frequency data, 
and can have skewed shapes and slow decaying tails.  
 
While the Black-Scholes model and diffusion processes constitute the main framework for 
derivatives pricing, they can, nonetheless, have inconsistencies with market data, typically in 
relation to the implied volatility and to the dynamics of the asset’s price. The model’s 
implied volatility tends to vary both in relation to the state and time, exhibiting a smile or a 
smirk. Volatility could even be seen as stochastic. The dynamics of the asset’s price may 
exhibit jumps of different sizes, with small jumps occurring more often than large jumps, 
leading both to asymmetries and fat tails in the asset’s returns, contradicting thus the 
Brownian motion assumption underlying the Black-Scholes model. These empirical features 
of assets’ returns were noted by Mandelbrot (1963) and Fama (1965). As the normal 
distribution did not fit the data, they proposed the use of stable distributions, similar to the 
Pareto distributions, which are capable of accommodating skewness and the slowly decaying 
tails of the empirical distribution, in contrast to the thin and rapidly decaying tails of the 
normal distribution. Clark (1973), however, noted that stable distributions have an infinite 
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variance and heavy tails, whereas assets’ returns distributions have a finite variance and 
semi-heavy tails. He proposed the use of Bochner (1955) concept of subordinated processes. 
Namely, the price process could be modeled as a Brownian motion, time changed by a 
random and independent subordinator, which is an increasing positive stochastic process. 
While Clark proposed the use of volume as subordinator, the number of transactions could 
also be used for measuring assets’ returns. His finding was that, when measured in relation to 
volume, cotton futures tend to be normally distributed. 
 
This paper addresses option pricing in the context of a Levy market model with an 
application consisting of deriving crude oil price density forecast from crude oil options. In 
view of the paramount relevance of Levy processes in financial modeling, Section II 
describes their key properties and particularly their characteristic function, a major tool for 
studying their distributional properties. Section III discusses a methodology for constructing 
Levy processes through subordination and describes examples of probability distributions 
that are obtained through subordination and that were found to fit adequately financial time 
series. As Levy processes may exhibit jumps, the markets become incomplete and there is an 
infinite number of martingale measures compatible with absence of arbitrage that can be used 
for pricing contingent claims. In this respect, Section IV presents Esscher transform as a 
procedure for selecting a martingale measure. It is known that probability distributions 
associated with Levy processes are not always available in closed form and may involve 
many special functions. The corresponding characteristic function may, however, be readily 
available. In Section V, the paper presents a methodology for pricing contingent claims based 
on characteristic functions. In Section VI, the paper discusses an application of the Levy 
pricing model to crude oil options and attempts to infer the density forecast of future oil 
prices at a given time horizon. Findings point to high volatility of oil futures prices and a 
right-skewed market expectations, implying greater probability mass on upward deviations 
from the mean. Consequently, extracting densities from options prices allows one to analyze 
the role of crude oil as an asset, besides its role as a commodity, and improves oil market 
modeling. Section VII concludes.  
 

II.   MODELING UNCERTAINTY IN ASSETS PRICES: LEVY PROCESSES 

A.   From Random Walks to Levy Processes 

A Levy process (LP) is defined as a cadlag (continu à droite et limite à gauche, right 
continuous and left limit (RCLL)) stochastic process 0( )t tX ≥ on a probability space 
( , , )F PΩ with values in R such that 0 0X =  and possesses the following properties: 
(i) independent increments: for every increasing sequence of times 0 ,..., nt t , the random 
variables

0 1 0 1
, ,.....,

n nt t t t tX X X X X
−

− − are independent, (ii) stationary increments: the law of 

t h tX X+ −  does not depend on t , and (iii) stochastic continuity: 0ε∀ > , 

0
lim ( ) 0t h th

P X X ε+→
− ≥ = . i.e., discontinuity occurs at random times. Levy processes are 

limits of random walks and are infinitely divisible into independent and identically 
distributed (i.i.d.) random variables. For any tX , 0t > , and 2n ≥ , an LP can be written as: 
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/ ( 1) /
1
( )

n

t tk n t k n
k

X X X −
=

= −∑ , where the successive increments are independent and stationary. 

An equivalent way to express the infinite divisibility is: ( )
1 ....n

t nX Y Y= + + , where the random 
variables 1 2, ,..., nY Y Y  are i.i.d. The probability distribution of tX  is the same as that for 

1 .... nY Y+ + . The most common examples of infinitely divisible laws are: the Gaussian, the 
Gamma, α − stable, and the Poisson distributions.  
 

B.   The Characteristic Function of the Levy Process: The Levy-Khintchine Formula 

Suppose ( )uφ is the characteristic function (CF) of a distribution. If for every positive integer 
n , ( )uφ is the n th power of a CF, then the distribution is infinitely divisible. For every such 
distribution there can be defined a stochastic process, { , 0}tX X t= ≥ , which starts at zero and 
has independent and stationary increments. If 0( )t tX ≥ is an LP, then for any 0t > , the 
distribution of tX is infinitely divisible and has a CF 1 ( )( ) [ ]iuX t uu E e e ψφ −= = , u R∈ , 0t ≥ . 
The cumulant characteristic function ( ) log ( )u uψ φ= is often called the characteristic 
exponent and satisfies the Levy-Khintchine formula:2 3 

2
2

1
\{0}

( ) [ 1 1 ( )] ( )
2

iux
x

R

u i u u e iux x dxσψ γ ν<= − + − −∫ , where Rγ ∈ is the drift parameter, 

2 0σ ≥  is the volatility parameter, and ν  is a Levy measure on \{0}R  with 

2inf(1, ) ( )x dxν
∞

−∞

< ∞∫ . The sums of all jumps smaller than some 0ε > does not converge. 

However, the sum of the jumps compensated by their mean does converge. This peculiarity 
leads to the necessity of the compensator term ( 1)1 xiux < . If the Levy measure is of the form 

( ) ( )dx f x dxν = , then ( )f x is called the Levy density. In the same way the instant volatility 
describes the local uncertainty of a diffusion, the Levy density describes the local uncertainty 
of a pure jump process.  
 
                                                 
2 The Levy-Khintchine formula is also written as; 

2
2

1 1

( ) (1 ) ( ) (1 ) ( )
2

iux iux

x x

u i u u e dx e iux dxσψ γ ν ν
≥ <

= − + + − + − +∫ ∫  

3 Recalling the definition of the cumulant generating function (CGF) of a random variable, it 
follows that ψ  is the CGF of 1X : 

1Xψ ψ= , the CGF of tX  varies linearly in t , 

1tX Xt tψ ψ ψ= = . The law of tX  is therefore determined by the knowledge of the law of 1X : 
the only degree of freedom in specifying a LP is to specify the distribution of tX  for a single 
time (say, 1t = ). 
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The Levy-Khintchine formula allows to study the distributional properties of an LP. Another 
key concept, the Levy-Ito decomposition theorem, allows one to describe the structure of an 
LP’s sample paths. Let { , 0}tX X t= ≥  be an LP, then the distribution of 1X  has as 
parameters 2( , , )γ σ ν  and X decomposes as: t t t tX t W J Mγ σ= + + + , where tW  is a Brownian 
motion. The instantaneous jump t t tX X X −∆ = −  follows an independent Poisson point 
process with intensity measureν , { 1}1

st s X
s t

J X ∆ >
≤

= ∆∑ , and M  is a martingale with jumps 

{ 1}1
st t XM X ∆ ≤∆ = ∆  . It is interesting to observe that there is a one-to-one correspondence 

between an LP and its CF. More precisely, starting with the Levy-Khintchine formula, three 
processes, (1)X , (2)X , and (3)X , can be built as follows: denoting (1)

t tX t Wγ σ= + , where 

tW is a standard P −Brownian motion, the CF of (1)X is straightforward and equal to: 

2 2
1

1( )
2

u i u uφ γ σ= + . Now, consider the process (2)

1

tN

t t j
j

X J Y
=

= =∑ , where N is a Poisson 

process whose intensityλ is defined by 
1

( )
x

dxλ ν
>

= ∫ , and 1Y , 2Y , ....., nY  are independent 

random variables, independent of the process N and with common distribution 11 ( )x dxν> . 
(2)
tX is a compound Poisson process whose CF is 2 ( )ue φ− , where 2 1( ) ( 1)1 ( )iux

xu e dxφ ν>= − −∫ . 

The last term in the Levy-Khintchine formula is the CF of an LP (3)X obtained as the limit of 
compound Poisson processes (different from (2)

tX ). Hence: (1) (2) (3)X X X X= + + . Each 
of (1)X , (2)X , (3)X is a semi-martingale, so is X .4   
 
An important implication of the Levy-Ito decomposition is that every LP is a combination of 
a Brownian motion with drift and a possibly infinite sum of independent compound Poisson 
processes. This also means that every LP can be approximated with arbitrary precision by a 
jump-diffusion process. In particular, the Levy measure ν  describes the arrival rates for 
jumps of every possible size for each component of tX . Jumps of sizes in the set A  occur 
                                                 
4 The transition operator for a Markov process is defined as follows ( ) [ ( )]t tP f x E f x X= + , 
verifying a semi-group property t s t sPP P+= . A semi-group tP  can be described by the means 

of its infinitesimal generator L , which is a linear operator defined by: 
0

( )lim t

t

P f fLf
t↓

−
= . 

Let 0( )t tX ≥ be an LP on R , then the infinitesimal generator of tX  is defined for 

any 2
0 ( )f C R∈ as 

2
2

12

1( ) ( ) ( ) ( ( ) ( ) ( )1 ) ( )
2 y

R

f f fLf x x x f x y f x y x dy
x x x

σ γ ν≤

∂ ∂ ∂
= + + + − −

∂ ∂ ∂∫ . 

Computation of expectations of various functionals of Levy processes can be transformed 
into partial integro-differential equations involving the infinitesimal generator. Due to this 
fact, infinitesimal generators are important tools in option pricing. 
 



 - 7 -   

according to a Poisson process with intensity parameter ( )
A

dxν∫ , where A  is an arbitrary 

interval bounded away from zero. The Levy measure of the process X may also be defined as 

0 1
( ) { 1 ( )}A s

s
A E Xν

≤ ≤

= ∆∑ . Integration of the Levy density over a particular spatial domain 

provides the arrival rates of jumps sized in this domain. Levy process X  has infinite activity 
if the integral of the measure ν  on the real line is infinite. This case characterizes a high rate 
of arrival of jumps of different sizes.  
 

C.   Finite-Activity Versus Infinite Activity Levy Jumps 

A pure jump LP can display either finite or infinite activity. In the former case, the aggregate 
jump arrival rate is finite, while in the latter case, an infinite number of jumps can occur in 
any finite time interval. A pure jump LP exhibits finite activity if the following integral is 
finite:

\{0}

( )
R

dxν λ= < ∞∫ . The classical example of a finite-activity jump process is the 

compound Poisson jump process of Merton (1976). For such process, the integral 

\{0}

( )
R

dxν λ= < ∞∫ , where λ is the Poisson intensity. Conditional on one jump occurring, the 

Merton model assumes that the jump magnitude is normally distributed with meanα  and 
variance 2σ . The Levy measure of the Merton process is given by: 

2

22

1 ( )( ) exp( )
22

xdx dxαν λ
σπσ
−

= − . Obviously, one can choose any distribution, ( )F x , for 

the jump size under the compound Poisson framework and obtain the following Levy 
measure; ( ) ( )dx dF xν λ= . Kou (2002) assumes a double-exponential conditional distribution 
for the jump size. The Levy measure in this case is given by 

1( ) ( ) exp( )
2

x
dx dF x dx

α
ν λ λ

η η
−

= = − . Eraker et al. (2003) incorporate compound Poisson 

jumps into the stochastic volatility process; jump size is controlled by one-sided exponential 

density. The Levy measure in this case is given by 1( ) ( ) exp( )xdx dF x dxν λ λ
η η

= = − , 0.x >  

Based on the Levy-Khintchine formula, the characteristic exponent corresponding to these 
compound Poisson jump components is given by 

\{0}

( ) (1 ) ( ) (1 ( ))iux

R

u e dF x uψ λ λ φ= − = −∫ , 

where ( )uφ denotes the CF of the jump size distribution ( )F x , 
\{0}

( ) ( )iux

R

u e dF xφ = ∫ . 

An infinite activity jump process can generate an infinite number of jumps within any finite 
time interval. The integral of the Levy measure 

\{0}

( )
R

dxν = ∞∫ is no longer finite. Examples in 

this class include the normal inverse Gaussian (NIG) model of Barndorff-Nielsen (1998), the 
generalized hyperbolic class of Eberlein et al. (1998), the variance-gamma (VG) model of 
Madan and Milne (1991), and the CGMY model of Carr et al. (2002). 
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III.   SUBORDINATION AND  TIME CHANGED-LEVY  PROCESSES 

Three key pieces of evidence on financial securities: jumps, stochastic volatility, and 
leverage effect are easily addressed when uncertainty in the economy is governed by a time-
changed LP. A stochastic time change to the LP amounts to stochastically altering the clock 
on which the LP is run. Intuitively, one can regard the original clock as a calendar time and 
the new random clock as a business time. A more active business day implies a faster 
business clock. Randomness in business activity generates randomness in volatility. 
Furthermore, if innovations in the LP are correlated with innovations in the random clock on 
which it is run, this correlation will capture the leverage effect. 
 

A.   Construction of Levy Processes by Subordination 

Clark (1973) proposed Bochner’s (1955) concept of subordinated stochastic process as a 
model to account for non-normality of returns. He showed that finite-variance distributions 
subordinate to the normal distribution fit cotton futures better than stable distributions. 
Writing the return process ( )X t as a subordinated process ( ) ( ( ))X t Z T t= , where the 
subordinator ( )T t is an increasing Levy process with independent and stationary increments, 
and using historical data on returns (represented by ( )X t ) and volume (represented by ( )T t ), 
he was able to show that the distribution of Z  computed in relation to T did satisfy classical 
normality tests. He also showed that the kurtosis of the increments of ( ( ))Z T t is an increasing 
function of the variance of the increments of ( )T t .5 
 
Monroe (1978) proved that every semi-martingale tX can be written as a time-changed 
Brownian motion, where the random time tT  is a positive and increasing semi-martingale. By 
such result, there exists a Brownian motion ( ( ), 0)W u u ≥ and a random time change 

( )T t where ( )T t is an increasing stochastic process such that: ( ) ( ( ))X t W T t= . As an 
implication, every semi-martingale can also be written as a time-changed LP ( ( ))tX Z T t= . 
The distribution of increments, ( ( ))Z T t∆ , is said to be subordinate to the distribution of 
increments, ( )Z t∆ ; ( )T t is a clock measuring the speed of the evolution. Furthermore, every 
semi-martingale tX  starting at zero ( 0 0X = ), can be uniquely represented in the form: 

                                                 
5 In Clark (1973), if ( )T t  is a lognormal with independent increments distributed as 

2
1( , )N µ σ  and Z is a normal process with independent increments distributed as 2

2(0, )N σ , 
then ( ) ( ( ))X t Z T t=  has the following lognormal-normal increments: 

2 2
3/ 2

2 2 2 2
1 2 1 20

1 (log )( ) exp( )exp( )
2 2 2LNN

yf y dυ µυ υ
πσ σ σ υσ

∞
− − − −

= ∫ . 
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0 1 0 1

( )
t t

c
t t t

x x

X X xd xdα µ µ ν
> ≤

= + + + −∫ ∫ ∫ ∫ , where c
tX is the continuous component,µ  is the 

counting measure of the semi-martingale, and ν  is its compensator. 
 
An important result from Monroe’s theorem relates to modeling the return distribution as a 
mixture of normals with a view to account for the observed fat tails of the return. Choosing 
for simplicity a discrete Tf  for T , the following holds: 

( ( ) ) ( ( ) | ( ) ) ( )TP X t dx P Z t dx T t f
ζ

ζ ζ∈ = ∈ =∑ . Now let ( ) ( )Z t W t= , and assuming the 

independence of the processes W and T , this yields: ( ( ) ) ( ( ) ) ( )TP X t dx P W dx f
ζ

ζ ζ∈ = ∈∑ . 

Hence the distribution of X appears as a mixture of normal distributions, where the mixing 
factor is the density of the time change, which itself accounts for the market activity 
measured by volume or number of trades. 
 
A simple example of  a subordinated LP is a compound Poisson process with a finite arrival 
rate, i.e., a random walk time changed by a Poisson process expressed as follows: 

( )

1
( )

tN

i
i

X t Y
=

=∑ , where ( )N t is a Poisson process with arrival rate tλ , and the sequence of iY  is 

i.i.d. with density 

2

22 exp( )
2( )

y

f y σ
σ π

−
=  for 0y > . The CF of tX  is 

2 2

( ) exp(2 (exp( ) 1))
2X
uu t σφ λ= − − . 

 
Another example of a time changed LP is to subordinate a Brownian motion 0( )t tW ≥  with 
drift µ  by an independent positive process 0( )t tT ≥ , yielding a new LP: ( )t t tX W T Tσ µ= + . 
This process is a Brownian motion if it is observed on a new time scale, which is the 
stochastic time scale given by tT . It is worth noticing that the constant volatility in the 
arithmetic Brownian motion W is going to give rise to stochastic volatility for the stochastic 
price X when W  is compounded with a stochastic time T . Time changes appear a natural 
tool to handle stochastic volatility. The interpretation of an LP as a subordinated Brownian 
motion is easier to understand than general Levy models. 
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B.   The Characteristic Function of a Subordinated Process 

The CF of a subordinated process X is obtained by composition of the Laplace exponent6 of 
T  with the characteristic exponent of Z . Since the time-changed process 

tt TX Z=  is a 
stochastic process evaluated at a stochastic time, its CF involves expectation over two 
sources of randomness, ( ) [ ] [ [ | ]]Tt

t

iuZ iuZ
X tu E e E E e Tξφ ξ= = = , where the inside expectation is 

taken on
tTZ , conditional on a fixed value of tT ξ= , and the outside expectation is on all 

possible values of tT . If the random time tT  is independent of tZ , the randomness due to the 
LP can be integrated out using equation: ( )( ) [ ]t z

t

iuZ t u
Z u E e e ψφ −= = . Simple computation 

yields: ( )( ) [ ] [ [ | ]] ( ( ))Tt t z

t t

iuZ iuZ T u
X t T zu E e E E e T Ee L uξ ψφ ξ ψ−= = = = = . Under independence, 

the CF of 
tt TX Z= is just the Laplace transform of tT  evaluated at the characteristic 

component of tZ .7  We can introduce asymmetry to the distribution of 
tt TX Z= by 

introducing correlation between the time change and the Levy innovations in Z . 
 

C.    Examples of Subordinated LP 

A simple approach to defining a parametric LP is to obtain an LP by subordinating a 
Brownian motion with an independent increasing LP. Here the CF of the resulting process 
can be obtained immediately, but there may not be always an explicit formula for the Levy 
measure. Due to the conditionally Gaussian structure of the process, simulation and 
computation can be considerably simplified. 
 
 
 

                                                 
6 Let 0( )t tT ≥ be a subordinator, that is an LP whose trajectories are increasing. Since tT is a 
positive random variable for all t , it is described by its Laplace transform rather than the 
Fourier transform.  Let the characteristic triplet of  T be (0, , )aρ . Then the moment 

generating function of tT  is: ( )[ ]tuT tl uE e e=  0u∀ ≤ , where 
0

( ) ( 1) ( )uxL u au e dxρ
∞

= + −∫ , and 

( )L u is the Laplace exponent of T . 
7Let 0( )t tZ ≥  be an LP on R with characteristic exponent ( )uψ  and triplet ( , , )σ ν γ and let 

0( )t tT ≥ be a subordinator with Laplace exponent ( )L u and triplet (0, , )aρ . Then 
( ) ( ( ))X t Z T t=  is an LP with CF ( ( ))[ ]tiuX tL uE e e ψ= , and triplet ( , , )X X Xσ ν γ  is given by: 

Y aσ σ= , 
0

( ) ( ) ( ) ( )X Z
sB a B p B dsν ν ρ

∞

= + ∫ , ( )B B R∀ ∈ , 
0 1

( ) ( )X z
s

z

a ds zp dzγ γ ρ
∞

≤

= + ∫ ∫ , where 

Z
tp is the probability density of tZ . 
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The Inverse Gaussian Process 
 
Let ( , )a bT be the first time a Brownian motion with drift 0b > , i.e., ( , 0)sW bs s+ ≥ , reaches 
the positive level 0a > . It is well known that this random time follows the so-called Inverse 
Gaussian law, ( , )IG a b , and has a CF: 2( ; , ) exp( ( 2 ))IG u a b a iu b bφ = − − + − . The IG  
distribution is infinitely divisible and the IG process ( ) ( ){ , 0}IG IG

tX X t= ≥ , with parameters 
, 0a b > , is defined as the process which starts at zero and has independent and stationary 

increments over the interval [ , ]s s t+ , , 0s t ≥  such that: 
( ) 2(exp( )) ( ; , ) exp( ( 2 ))IG
t IGE iuX u at b at iu b bφ= = − − + − . The density function of the 

( , )IG a b  law is explicitly given by: 3/ 2 2 1 21( ; , ) exp( ) exp( ( ))
22IG

af x a b ab x a x b x
π

− −= − + , 

0x > . Its Levy measure is given by 1/ 2 3/ 2 2
( 0)

1( ) (2 ) exp( )1
2IG xdx ax b x dxν π − −

>= − . 

The Generalized Inverse Gaussian Process 
 
The Inverse Gaussian ( , )IG a b  law can be generalized to the Generalized Inverse Gaussian 
distribution ( , , )GIG a bλ . This distribution is given by 

1 2 1 2( / ) 1( ; , , ) exp( ( ))
2 ( ) 2GIG

b af x a b x a x b x
K ab

λ
λ

λ

λ − −= − + , 0x > . 

The CF is given by 2 / 2 21( ; , , ) (1 2 / ) ( 1 2 )
( )GIG u a b iu b K ab iub

K ab
λ

λ
λ

φ λ −= − − , 

where ( )K xλ  denotes the modified Bessel function of the third kind with index λ . 
The ( , , )GIG a bλ distribution is infinitely divisible. The GIG  process is defined as the LP 
where the increment over the interval [ , ]s s t+ , , 0s t ≥  has the CF ( ( ; , , ))t

GIG u a bφ λ . The 

Levy measure has a density: 1 2 2

0

1( ) exp( )( exp( ) ( ) max[0, ])
2

x x b x a xz g z dzν λ
∞

−= − − +∫ , where 

2 2 2 2 1( ) ( ( ( 2 ) ( 2 )))g z a z J a z N a zλ λπ −= +  and J and N  are Bessel functions.  
 
The Variance Gamma Process 
 
A Variance Gamma ( )VG process is defined as a Brownian motion with drift θ and volatility 
σ  time-changed by a Gamma process. More precisely, let { , 0}tG G t= ≥  be a Gamma 
process with parameters 1/ 0a υ= > and 1/ 0b υ= > .8 Let { , 0}tW W t= ≥  denote a Brownian 

                                                 
8 The probability density of the Gamma process with mean rate t  and variance tυ  is well 

known: 
1 1

( ) / ( )
u t tf u u eυ υ υυ

υ
− −

= Γ . Its Laplace transform is [exp( )] (1 )
t

tE Gυ υλ λυ
−

− = + . 

(continued…) 
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motion, and let 0σ >  and Rθ ∈ ; then the VG  process ( ) ( ){ , 0}VG VG
tX X t= ≥ , with 

parameters 0σ > , 0υ > , and θ , can be defined as ( )
t

VG
t t GX G Wθ σ= + . The CF is given by 

1
2 21( ; , , ) (1 )

2VG u iu u υφ σ ν θ θυ σ υ
−

= − + . The distribution is infinitively divisible and the 

process ( ) ( ){ , 0}VG VG
tX X t= ≥  is defined as the process which starts at zero, has independent 

and stationary increments and for which ( ) ( )VG VG
s t sX X+ − follows a ( , / , )VG t t tσ υ θ  law over 

the interval [ , ]s t s+ . The CF is: 

( ) 2 21[exp( )] ( ; , / , ) ( ; , , ) (1 )
2

t
VG t

t VG VGE iuX u t t t u iu u υφ σ υ θ φ σ υ θ θυ σ υ
−

= = = − + . 

  
The two additional parameters in theVG  distribution, which are the drift of the Brownian 
motion,θ , and the volatility of the time change,υ , provide control over skewness and 
kurtosis, respectively. Namely, when 0θ < , the distribution is negatively skewed, and vice 
versa. Moreover, larger values ofυ  indicate frequent jumps and contribute to fatter tails. The 
Levy measure has infinite mass, and hence a VG  process has infinitely many jumps in any 
finite time interval. The moments of ( , , )VG σ υ θ are: the mean =θ ; the variance = 2 2σ υθ+ ; 

skewness = 
2 2

2 2 3/ 2

(3 2 )
( )

θυ σ υθ
σ υθ

+
+

; and kurtosis = 4 2 2 23(1 2 ( ) )υ υσ σ υθ −+ − + . Clearly, skewness 

is influenced by θ , and kurtosis by υ . 
 
The Normal Inverse Gaussian Process 
 
The Normal Inverse Gaussian ( )NIG  process can be related to a Brownian motion time-
changed by an Inverse Gaussian process. Let { , 0}tW W t= ≥  be a Brownian motion and let  

{ , 0}tIG IG t= ≥  be an IG  process with parameters 1a = and 2 2b δ α β= − , with 0α > , 
α β α− < < and 0δ > ; then the process: 2

t t tX IG Wβδ δ= +  is an NIG  process with  
parameters , ,α β δ .9 ( , , )NIG α β δ  has a CF given by 

2 2 2 2( ; , , ) exp( ( ( ) ))NIG u iuφ α β δ δ α β α β= − − + − − . This is an infinitely divisible CF. 
Therefore, the NIG ( ) ( ){ , 0}NIG NIG

tX X t= ≥ , with ( )
0 0NIGX = has stationary and independent 

                                                                                                                                                       

It results that the VG  process has a simple CF 
2

2( ) (1 )
2

t

VG u i u u υσ υφ θυ
−

= − + . 

9 An equivalent parameterization of the NIG  process is a Brownian motion with drift θ and 
volatility σ computed at a random time given by an (1, )IG υ  process: 

( ; , , ) ( )NIG t tX t IG W IGυ υσ υ θ θ σ= + . The CF is 
2 2

( )[ ] [exp( ) ]
2

NIGiuX t
t

uE e E i u IGυσθ= − .  
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increments. ( )NIG
tX has a ( , , )NIG tα β δ  law with a CF: 

2 2 2 2( ; , , ) exp[ ( ( ) )]NIG u t t iuφ α β δ δ α β α β= − − + − −  

The Levy measure is given by 1exp( ) ( )
( )NIG

x K x
dx dx

x
β αδαν

π
= , where ( )K xλ denotes the 

modified Bessel function of the third kind with index λ . The integral of NIGν over the real 
line is infinite; hence, the NIG  process has infinite activity. The density of the 

( , , )NIG α β δ distribution is given by 
2 2

2 2 1
2 2

( )( ; , , ) exp( )NIG
K xf x x

x
α δαδα β δ δ α β β

π δ
+

= − +
+

. The moments are: mean 

= 2 2δβ α β− ; variance = 2 2 2 3/ 2( )α δ α β −− ; skewness = 1 1/ 2 2 2 1/ 43 ( )βα δ α β− − −− ; and 

kurtosis =
2 2

2 2 2

43(1 )α β
δα α β

+
+

−
. The NIG  has semi-heavy tails, in particular 

3/ 2( ; , , ) ~ exp(( ) )NIGf x x xα β δ α β− ± + as x →±∞ up to a multiplicative constant. 
 
The Generalized Hyperbolic Process 
 
The Generalized Hyperbolic (GH ) distribution can be represented as a normal variance-
mean mixture. Let T be a GIG  random variable and W be an independent standard normal 
variable. Then the law of TW Tµ+ , where µ  is a constant, is called normal variance-mean 
mixture with mixing distribution GIG . 

2 2

0

( ; , , , , ) ( ; , ) ( ; , , )GH Normal GIGf x f x w w f w dwα β δ υ µ µ β υ δ α β
∞

= + −∫ . The GH distribution, 

( , , , )GH α β δ υ , is defined in Barndorff-Nielsen (1998) through its CF  
2 22 2

/ 2
2 2 2 2

( ( ) )
( ; , , , , ) ( )

( ) ( )
i u

GH
K iu

u e
iu K

µ υ υ

υ

δ α βα βφ α β δ υ µ
α β δ α β

− +−
=

− + −
, 

where Kυ is the modified Bessel function of  the third kind. This is an infinitely divisible CF. 
The GH Levy process ( ) ( ){ , 0}GH GH

tX X t= ≥ , with ( )
0 0GHX = , stationary and independently 

distributed increments, has the CF: ( )[exp( )] ( ( ; , , , , ))GH t
t GHE iuX uφ α β δ υ µ= . The density of 

( , , , , )GH α β δ υ µ distribution is given by 

( 1/ 2)
2 2 ( 1/ 2) / 2 2 2( ; , , , , ) ( , , , )( ( ) ) ( ( ) ) exp( ( ))GHf x a x K x xυ

υα β δ υ µ α β δ υ δ µ α δ µ β µ−
−= + − + − −

, 
2 2 / 2

1
2 22

( )( , , , )
2 ( )

a
K

υ

υ υ
υ

α βα β δ υ
πα δ δ α β

−

−
=

−
. TheGH distribution has semi-heavy tails: in 

particular 1( ; , , , ) ~ exp(( ) )GHf x x xυα β δ υ α β− ± +  as x →±∞ up to a multiplicative constant. 
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Some of the above processes are special cases of theGH  process. The Variance-Gamma 
process can be obtained from the GH process by taking: 2 /υ σ ν= , 2 2(2 / ) ( / )α ν θ σ= + , 

2/β θ σ=  and 0δ → . The Hyperbolic process ( )HYP is obtained when 1υ = . In this case, 
( )
1

HYPX  follows ( , , )HYP α β δ  with CF: 
2 22 2

1/ 2 1
2 2 2 2

1

( ( ) )
( ; , , ) ( )

( ) ( )
HYP

K iu
u

iu K

δ α βα βφ α β δ
α β δ α β

− +−
=

− + −
. 

The density reduces to 
2 2 1/ 2

2 2

2 2
1

( )( ; , , ) ) exp( )
2 ( )

HYPf x x x
K
α βα β δ α δ β

πδ δ α β
−

= − + +
−

, 

The Normal Inverse Gaussian process is obtained when 1/ 2υ = − , thus: 
( , , , 1/ 2) ( , , )GH NIGα β δ α β δ− = . 

 
The normal inverse Gaussian, the Variance-Gamma, and the hyperbolic motion are Levy 
processes which share the property of being pure jump and infinite activity models. Their 
empirical performance in modeling skewness, leptokurtosis, and the implied volatility smile 
in option prices made them more appealing than the classical diffusions or jump-diffusion 
models. Their representation as time-changed Brown motions allows to model the time 
change which itself reflects the intensity of economic activity through news arrival and 
trades. The tractability of their CF allows to recover option prices through fast Fourier 
transform (FFT). Eberlein et al. (1998) showed that the hyperbolic distribution allows an 
almost perfect fit to financial data, both in spot and derivatives markets. The knowledge of 
the CF enables to recover the probability distribution through numerical inversion 

as:
0

1 1 ( ) ( )( )
2 2

iux iuxe u e uF x du
iu

φ φ
π

∞ −− −
= + ∫ . 

The Appendix describes the estimation of the parameters of an LP using the CF. 
 

IV.   MARKET INCOMPLETENESS AND ESSCHER TRANSFORM 

When uncertainty is modeled by an LP, except when X is a Brownian motion or a Poisson 
process, the Levy process is an incomplete model. A perfect hedge cannot be obtained and 
there is always a residual risk which cannot be hedged. In a Levy market, there are many 
different equivalent martingale measures under which the discounted asset price process is a 
martingale. The existence of a martingale measure is related to the absence of arbitrage, 
while the uniqueness of the equivalent martingale measure is related to market completeness, 
i.e., perfect hedging. A contingent claim can be perfectly hedged if there exists a predictable 
strategy which can replicate the claim in the sense that there is a dynamic portfolio, investing 
in a riskless bond and the asset, such that at every time point the value of the portfolio 
matches the value of the claim. The portfolio must be self-financing. A market is called 
complete if for every integral contingent claim there exists an admissible self-financing 
strategy replicating the claim.10 
                                                 
10 The question of completeness is linked with the uniqueness of the martingale measure, 
which is in turn linked with the mathematical predictable representation property (PRP) of a 

(continued…) 
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One approach for finding an equivalent martingale measure is the Esscher transform 
proposed by Gerber and Shiu (1994). An Esscher transform of  a stock-price process induces 
an equivalent probability measure on the process. The Esscher parameter is determined so 
that the discounted price of a security is a martingale under the new probability measure. Let 

( )( ) (0) X tS t S e= ,11 where 0{ ( )}tX t ≥  is an LP defined on a probability space ( , , )F PΩ , with 
stationary and independent increments and (0) 0X = . For each t , the random variable ( )X t , 
seen as the continuous compounded rate of return over the t  periods, has an infinitely 
divisible distribution with a probability density under P given by ( , )f x t , 0t > . The moment 
generating function (MGF) is assumed to exist and is defined as 

( )( , ) [ ] ( , )uX t uxM u t E e e f x t dx
∞

−∞

= = ∫ . By assuming that ( , )M u t  is continuous at 0t = , it 

follows from the infinite divisibility that ( , ) [ ( ,1)]tM u t M u= . Let h  be a real number such 

that ( ) ( )hxM h e f x dx
∞

−∞

= ∫  exists. The Esscher transform (with parameter h ) of the original 

distribution is defined as ( )( ; )
( )

hxe f xf x h
M h

= . The Esscher transform (with parameter h ) of the 

process 0{ ( )}tX t ≥  is defined as an LP process with stationary and independent increments, 

where the new probability density of ( )X t , 0t > , is ( , ) ( , )( , ; )
( , )

( , )

hx hx

hy

e f x t e f x tf x t h
M h t

e f y t dy
∞

−∞

= =

∫
. 

The corresponding MGF is ( , )( , ; ) ( , ; )
( , )

ux M u h tM u t h e f x t h dx
M h t

∞

−∞

+
= =∫  and 

( , ; ) [ ( ,1; )]tM u t h M u h= . The parameter h  is determined so that the modified probability 
measure, denoted by Q , is an equivalent martingale measure. The idea is to find *h h= , so 
that the discounted stock price process 0{ ( )}rt

te S t−
≥ is a martingale with respect to the 

probability measure corresponding to *h . The martingale condition is: 
                                                                                                                                                       
martingale. In probability theory a martingale M is said to have the PRP if, for any square-

integrable random variable H , we have 
0

[ ]
T

s sH E H a dM= + ∫ for some predictable process 

{ ,0 }sa a s T= ≤ ≤ . If such a representation exists, the predictable process sa will give the 
necessary self-financing admissible strategy. 
11 The asset price can alternatively be specified as a stochastic differential equation: 

t t t tdS S dt S dXµ σ− −= + , where tS − is left limit and tX is an LP. The solution to this equation 
is the well-known Doleans-Dade or stochastic exponential given by: 

0 exp( ) (1 ) sX
t t s

s t

S S t X X e σµ σ σ − ∆

≤

= + + ∆∏ , with s s sX X X −∆ = − and (1 ) 0sXσ+ ∆ > . 
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(0) [ ( )] [ ( )]Q rt rt QS E e S t e E S t− −= = . The parameter *h  is a solution to 
( 1) ( )

( )
( )

[ ] ( , )(0) [ ( )] [ (0) ] (0) (0)
[ ] ( , )

P h X t
Q rt rt Q X t rt rt

P hX t

E e M u h tS E e S t e E S e e S e S
E e M h t

+
− − − − +

= = = = . 

This condition is equivalent to the following equation: ( )1 [ ]rt Q X te E e−= , or *(1, ; )rte M t h= . 
The solution does not depend on t . Therefore, setting 1t = , yields *(1,1; )re M h= , or in 
logarithm form: * * *log[ (1,1; )] log[ (1 ,1)] log[ ( ,1)]r M h M h M h= = + − . The risk-neutral 
probability measure obtained as an Esscher equivalent measure is given by: 

( )| exp log( ( ))
( )

t

t

hX

t thX

dQ eF hX t M h
dP E e

= = − . The parameter h  is the solution to 

log ( 1) log ( )r M h M h= + − .  
  
Let 1( ) {exp( )}u E uiXφ = denote the CF of 1X . Since the MGF is, up to a change of variable 
u iu↔− , a CF, yielding ( ) ( )M u iuφ= − or equivalently ( ) ( )M iu uφ= , the CF ( )hφ of the 

Esscher transform measure is given by ( ) ( )( )
( )

h u ihu
ih

φφ
φ

−
=

−
and remains infinitely divisible. 

The condition on MGF yields an identical condition on the CF, namely for the discounted 

price to be a martingale, the following has to hold: ( ( 1))
( )

r i he
ih

φ
φ
− +

=
−

, or 

log ( ( 1)) log ( )r i h ihφ φ= − + − − . Moreover, if the characteristic triplet of the process tX  
under P  are 2( , ( ), )dx bσ ν , then they become, under Q , ( )2 ( ) ( )( , ( ), )h h hdx bσ ν , with 

( )2 2hσ σ= ,
*( ) ( ) ( )h h xdx dxν ν= , and 

*( ) * 2

{ 1}

( 1) ( )h h x

x

b b h x e dxσ ν
≤

= + + −∫ . Miyahara (2004) 

showed that Esscher transform could be identified with the minimum entropy martingale 
measure. 
 
An alternative approach for computing a risk-neutral measure, similar to the Esscher 
transform, can also be proposed (Carr et al., 2003). Let 0( )t tX ≥ be a real-valued process with 

independent increments. Then 0( )
[ ]

t

t

iuX

tiuX

e
E e ≥  is a martingale u R∀ ∈ . For example, if the asset 

price tS is modeled as 0 exp[ ]t tS S rt X= +  where tX  is an LP. The  resulting risk-neutral 
process for the log price is: log ( ) (log (0) log [exp( ( )]) ( ))S t S rt E X t X t= + − + . The CF of the 
log price is: [exp( log( ( )))] exp( ((log (0) log [exp( ( )]) [exp( ( ))]E iu S t iu S rt E X t E iuX t= + − .  
 
 

V.   OPTION PRICING USING CHARACTERISTIC FUNCTIONS 

Characteristic functions were useful in simplifying the complexity of option pricing. Under 
martingale pricing, the value of an option is a convolution of a discounted pay-off function 
with the state price density. Using the Feynman-Kac formula, which stipulates that 
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if ),( tSf satisfies a partial integro-differential equation (PIDE), with final condition: 
)(),( SgTSf = for all S , then the solution is given by:12 

0
( , ) [ ( ) exp{ ( ) } | ] exp{ ( ) } ( ) ( | )

T TQ
t t T t T T t Tt t

f S t E g S r d S S r d g S p S S dSς ς ς ς
∞

= − = = −∫ ∫ ∫  

The conditional expectation is computed with respect to a risk-neutral transition probability 
density )|( tT SSp . From Breeden and Litzenberger (1978), the state price density is: 

2

2( | ) exp( ( ) ) | ( ; , )
t

T t K S
t

p S S r d C t K T
K

τ

ς ς
+

=

∂
− =

∂∫ , where ( ; , )C t K T  is the value of a call 

option.13 However, for many stochastic processes, particularly Levy processes, the transition 
densities are often complicated and may not be  readily available in closed form. The CF of 
the underlying stochastic process may be readily available in closed form. Using the CF, it 
turns out to be much easier to compute option prices as an integral in the Fourier space and 
interpret this integral as a Parseval identity. Let ( ; , )z tφ τ  be the conditional CF of  the state 

price density 
0

( , ) exp{ ( ) } ( | )T
TizS

T t Tt
z t e r d p S S dSφ ς ς

∞
= −∫ ∫ , Lewis (2001) has shown that the 

option value can be expressed as a convolution in the Fourier space: 

ˆ( , ; ) ( ) ( )
2

ir
izX

t
i

eC S K e z g z dz
ϖτ

ϖ

τ φ
π

+∞−
−

−∞

= −∫ ,14 where ln t tS X rτ= + , ˆ ( ) exp( ) ( )g z izs g s ds
∞

−∞

= ∫ , 

z u iw= + , and lnt ts S= . Being expressed as a complex-valued integral, the option value can 
thus be computed using residue calculus. 
                                                 
12 When the asset price tS  is modeled as an exponential LP, Ito’s formula applied to 

( )tf S shows that under the risk neutral measure tS  has the following infinitesimal generator: 
2 2 21( ) ''( ) '( ) [ ( ) ( ) '( )] ( )

2t t t t t t
R

L f x c x f x r xf x f x xy f x xyf x dyσ σ σ ν= + + + − −∫ , 

where [ , ( ), ]t tdx rσ ν  are the triplet under the risk-neutral measure. Let ( , )f t S be the solution 

of the following Cauchy problem: 0t t
f L f r f
t

∂
+ − =

∂
, ( , ) ( )f T S g S= . Then ( , )f t S  admits 

the representation ( , ) exp ( ) |
T

Q
T t

t

f t S E r d g S Fς ς
⎡ ⎤⎧ ⎫

= −⎢ ⎥⎨ ⎬
⎢ ⎥⎩ ⎭⎣ ⎦

∫ . 

13 The risk-neutral probabilities, discounted at the risk-free rate of interest, are interpreted 
economically as the prices of Arrow-Debreu (AD) securities, or the state prices. An AD 
security is a primitive security associated with a particular future state of the world; it pays 
$1 if that state occurs, and nothing otherwise. All contingent claims and derivatives can be 
expressed in terms of a portfolio of AD securities and priced accordingly. Given a vector of 
state prices, the price of any contingent claim may be determined by multiplying the claim’s 
payoff in each state by the corresponding state price, and then summing over all states. 
14 This formula is based on Parseval’s identity: *1 ˆ( ) ( ) ( ) ( )

2T T Tg S p S dS g z z dzφ
π

∞
∞

−∞
−∞

=∫ ∫ , 

where ˆ( )g z is the Fourier transform of ( )Tg S and *( )zφ is the conjugate of ( )zφ . 
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Carr and Madan (1999) proposed the use of fast Fourier transform (FFT) for pricing options. 
Let ln( )k K= , where K is the strike price, ( )TC k = value of a T −maturity call option with 
strike K ,  and ( ) exp( ) ( )T Tc k k C kα≡  for 0α > , the damped option price for which a Fourier 

transform exists. This transform is expressed as: ( ) ( )izk
T Tz e c k dkψ

∞

−∞

= ∫ . Carr and Madan 

(1999) showed that transforms are related as follows: 2 2

( ( 1) )( )
(2 1)

rT
T

T
e z iz

z i z
φ αψ

α α α

− − +
=

+ − + +
. 

Knowledge of the CF of ( ( 1) )T z iφ α− + , which is the CF of the log of the asset price under 
the risk neutral-measure, implies knowledge of the Fourier transform of the value of the 
option. The option price can therefore be computed via Fourier inversion as: 

0

exp( ) exp( )( ) ( ) ( )
2

izk izk
T

k kC k e z dz e z dzα αψ ψ
π π

∞ ∞
− −

−∞

− −
= =∫ ∫ . 

 
The Fourier inversion can be approximated discretely via an N -point sum with a grid spacing 
of ∆  in the Fourier domain. The inversion integral can be approximated using an integration 

rule, such as Simpson’s or the trapezoidal rule, as 
21 ( )

00

( ) j
N i xzixz N

j
j

e z dz e
π

ψ ψ
∞ − −−

=

≈ ∆∑∫ . 

The points jz are equidistant with grid spacing ∆ , jz j= ∆ . The value of ∆  should be 
sufficiently small to approximate the integral well enough, while the value of N∆ should be 
large enough to assume the CF is equal to zero for z z N> = ∆ . In general, the values jψ are 
set equal to ( )j j jz wψ ψ= , where jw are the weights of the integration rule. Appropriate 
values of the coefficient α  are chosen to ensure the boundedness of the truncation error. 
 
 

VI.   APPLICATION TO CRUDE OIL OPTIONS: THE INVERSE PROBLEM 

An application of the above analysis to crude oil options is undertaken in this section with the 
objective of estimating, from observed options’ market values, density forecast for crude oil 
prices at a given maturity date. The estimation of the risk-neutral distribution is known as the 
inverse problem in option pricing models. While the pricing problem is concerned with 
computing values of options given model’s parameters, the inverse problem consists of 
backing out the parameters describing risk-neutral dynamics from observed prices. The 
inverse problem is also known as model calibration, whereby parameters are extracted from 
observed market values for the options. In accordance with the above analysis, crude oil 
prices are assumed to follow an exponential Levy process with triplet 
( ( ), ( ), ( ))σ ν γΦ Φ Φ under the risk-neutral measure and Φ denotes the parameters of 
distribution. The calibration procedure is based on minimizing the quadratic pricing error: 

( )2

1

1ˆ arg min ( , ) ( , )
N

i i i
i

C T K C T K
N

Φ

Φ =

Φ = −∑ , under the put-call parity constraint: 

( )r T t
t t tS Put Call Ke− −+ − = , where CΦ denotes the call option computed for the exponential 
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Levy model with triplet ( ( ), ( ), ( ))σ ν γΦ Φ Φ , iC  denotes the observed prices of call options 
for maturity T and strikes iK . The put option values are the observed market values.15 
 
The calibration exercise is applied to the Variance-Gamma model. The data set consists of 
observed crude oil options on July 5, 2005 for maturity end-September 2005; the risk-free 
interest was the three-month U.S. treasury bill rate; and the crude futures price was US$ 
59.81 per barrel. The estimation yielded the following parameters: 2σ̂ = 0.32,υ̂ =0.20 θ̂ =0.10. 
The estimated 2σ̂ indicates high volatility characterizing the oil market; υ̂  shows fat tails, 
implying higher probability than the normal distribution for important deviations of prices 
from the futures level; finally,θ̂  indicates positive skewness, meaning that the market was 
according higher probability for upward deviations from the expected mean (Figure 1). The 
robustness of the results is confirmed by the use of the following linear model: .A D q= , 
where A  is a vector of call and put options prices, D  is a pay-off matrix, and q  is a vector of 
Arrow-Debreu prices. Owing to the high volatility, market expectations can change 
dramatically during intra-day trading or from one day to the other and thus can change 
dramatically the density forecast for a given maturity time. For this reason, the calibration 
results need to be interpreted with caution. 
 
These findings support the asset’s view to crude oil markets. Traders in derivatives markets 
are hedgers, arbitrageurs, and speculators. Many types of investors participate in the crude oil 
futures market, including speculative and non speculative traders. The latter group includes 
institutional investors (e.g., pension funds) who seek to diversify their portfolios with less 
correlated assets, whereas the former group includes hedge funds and commercial entities 
registered with the Commodity Futures Trading Commission (CFTC). The aggregate of all 
large-traders’ position reported to the CFTC usually represents 70-90 percent of total open 
interests in any given derivatives market.16 Commercial traders occasionally take speculative 
short-term positions during periods of large price swings. High volatility and volatility 
clustering increase the speculative activity and add pressure on futures prices. Furthermore, 
very low interest rates reduce considerably the cost of shorting bonds as well as the cost of  
margin requirements and increase the volume of activity in the futures market. For instance, 
increased demand for long contracts would exert an upward pressure on futures prices. A 
significant portion in crude oil price increase could be attributed to derivatives markets and to 
the role of crude oil as an asset rather than as a commodity. 

                                                 
15 Cont and Tankov (2004) argued that the calibration problem could be an ill-posed problem 
and proposed the use of relative entropy, which is the Kullback-Leibler distance for 
measuring the proximity of two equivalent probability measures, as a regularization method 
with the prior distribution estimated from the statistical data via the maximum likelihood 
method. This regularization will enable to find a unique martingale measure.  

16 Data for February 1, 2005 indicated that commercial traders held 67.1 percent of the open 
long positions and 69.2 percent of the short positions in crude oil futures on the New York 
Mercantile Exchange (NYMEX). 
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Figure 1. Crude oil prices density forecast on July, 5, 2005 for end-September 2005.  

 
 

 
Subsequently, the forecast of oil prices relying only on the role of crude oil as a commodity 
would certainly omit the significant impact of derivatives markets. The use of Levy processes 
and their corresponding inverse problem would allow one to study the role of asset markets 
in the behavior of crude oil prices. The commodity aspect is also important. To the extent 
that demand is acting against a short-term fixed crude oil supply and bottlenecks in refining 
and distribution capacity, it causes frequent and large jumps in crude oil prices and suggests 
the use of Levy processes for modeling these jumps. 
 

VII.   CONCLUSIONS 

The paper has addressed option pricing models from the perspective of Levy processes, 
which offer better tools for analyzing skewness, fat tails, and stochastic volatility in high-
frequency financial data than the classical diffusions or jump-diffusion models. The concept 
of subordination plays an important role in building an LP and amounts to measuring returns 
in relation to the level of activity and news, instead of calendar time. High level of activity or 
important news may cause higher volatility in returns. The Normal Inverse Gaussian, the 
Variance-Gamma, and the General Hyperbolic motions are Levy processes which are time-
changed Brown motions and share the property of being pure jump and infinite activity 
models. Their empirical performance in modeling skewness, leptokurtosis, and the implied 
volatility smile in option prices was deemed consistent with data. Levy processes, however, 
lead to incomplete markets and an infinite number of martingale measures that are 
compatible with no arbitrage. The Esscher measure constitutes a procedure, among many 
others, for obtaining a martingale measure. The role of characteristic functions in option 
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pricing has become prominent, particularly in the context of processes that do not have easily 
available distribution functions. Fourier transforms offer an efficient tool for option pricing 
when CFs are available in closed forms. 
 
The paper has addressed the inverse problem and attempted to extract a risk-neutral 
distribution from crude oil options. The results indicate that market expectations were 
positively skewed, namely the market put a higher probability mass on crude oil prices 
remaining above the futures’ level. This outcome is in conformity with the sustained pressure 
on oil prices in the recent past. The Levy market model described in this paper is highly 
relevant to the work of the Fund. It provides an adequate tool for analyzing high-frequency 
data, gauge market sentiment, and design appropriate policy responses. The findings of the 
calibration could be relevant for policymaking. This may require assessing factors causing 
pressure on crude oil demand, including low interest rates and depreciating currencies, and 
seeking greater energy efficiency and inter-energy substitution. They also point to the 
importance of derivatives markets in influencing crude oil prices. A high speculative activity 
associated with high volatility in futures prices would lead to volatility clustering and hence 
greater uncertainty in crude oil futures prices. Energy modeling would need therefore to look 
at the role of crude oil as an asset besides its role as a commodity. The latter aspect remains 
important. To the extent that demand pressure is acting against a short-term fixed crude oil 
supply and bottlenecks in the refining and distribution capacity, frequent and sizable jumps in 
crude oil prices will take place. Levy processes and their corresponding inverse problems 
would provide a framework for assessing both the asset and commodity aspects in crude oil 
prices behavior.  
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Empirical Characteristic Function and Estimation in the Frequency Domain 

 
The lack of a tractable form of the probability density function makes estimation via 
maximum likelihood of the parameters of the distribution extremely difficult. Moreover, the 
likelihood function can be unbounded over the parameter space. Consequently, alternative 
methods, based on the characteristic function, were proposed, (e.g., Parzen (1962), and 
Feuerverger and McDunnough (1981a and 1981b)), to deal with inference problems 
involving such distribution. Being a Fourier transform of the probability density function the 
characteristic function (CF) is always bounded; it can have a closed form expression; and it 
retains all the information in the sample. The basic idea of the estimation in the frequency 
domain, called also the empirical characteristic function (ECF) procedure, is to match the CF 
derived from the model and the ECF obtained from the data. Because the minimization of the 
distance between the ECF and CF over a grid of points in the Fourier domain is equivalent to 
matching a finite number of moments, the ECF method is in essence equivalent to the 
Generalized Method of Moments (GMM). Feuerverger (1990) proves that, under some 
regularity conditions, the resulting estimate can be made to have arbitrarily high asymptotic 
efficiency provided that the sample of observations is sufficiently large and the grid of points 
is sufficiently fine and extended.  
 
Suppose 1,...., nX X  are i.i.d. realization of the same variable X with density ( ; )f x θ and 
distribution function ( )F xθ . The parameter lRθ ∈ is the parameter of interest with true value 

0θ . We wish to estimate θ  from a realization { }1 2, ,..., nX X X . Define the theoretical CF as : 

( ) ( )iuxu e dF xθ θφ = ∫ and its empirical counterpart (ECF) as 

1 1 1

1 1 1( ) ( ) exp( ) cos( ) sin( )
n n n

iux
n n j j j

j j
u e dF x iuX uX i uX

n n n
φ

= =

= = = +∑ ∑ ∑∫  

The focus here is on moment conditions of the form: ( , ; ) exp( ) ( , )j jh u X iuX uθ φ θ= − . 
Obviously, 0( ( , ; )) 0jE h u X θ = , u∀ . Suppose q discrete points 1 2, ,...., qu u u  in the Fourier 
space are used and define 

( )'

1 1( ; ) Re ( , ; ) ,...., Re ( , ; ) , Im ( , ; ) ,...., Im ( , ; )j j q j j q jm X h u X h u X h u X h u Xθ θ θ θ θ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . 

By construction 0( ( ; )) 0jE m X θ = . This forms 2q (usually larger than l ) moment conditions. 
Evaluating the ECF and the CF at the grid points yields:  

( )'

1 1Re[ ( )],....,Re[ ( )], Im[ ( )],...., Im[ ( )]n n n q n n qV u u u uφ φ φ φ=  and 

( )'

1 1Re[ ( ; )],....,Re[ ( ; )], Im[ ( ; )],...., Im[ ( ; )]q qV u u u uθ φ θ φ θ φ θ φ θ= . Obviously: 

1

1 ( ; )
n

j n
j

m X V V
n θθ

=

= −∑ . From Feuerverger and McDunnough (1981a, Theorem 2.1) we have 

that ( )TT V Vθ− converges in distribution to a 2q − dimensional normal distribution with 

zero mean and covariance matrix: RR RI

IR II

Ω Ω⎛ ⎞
Ω = ⎜ ⎟Ω Ω⎝ ⎠
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where the elements in the partitions associated with ju  and ku are given by: 

( ) ( )1 Re ( ) Re ( ) Re ( ) Re ( )
2RR j k j k j kjk

u u u u u uφ φ φ φΩ = + + − −  

( ) ( )1 Im ( ) Im ( ) Re ( ) Im ( )
2RI j k j k j kjk

u u u u u uφ φ φ φΩ = + − − −  

( ) ( )1 Re ( ) Re ( ) Im ( ) Im ( )
2II j k j k j kjk

u u u u u uφ φ φ φΩ = − − + − . 

  
The ECF method estimates θ  by finding the θ  that minimizes ' 1ˆ( ) ( )T TV V V Vθ θ

−− Ω − , where 

Ω̂  is a consistent estimator of Ω . This procedure can be thought of as the second stage 
GMM estimation or the non-linear regression of nV on Vθ  and hence yields GMM efficient 

estimators. The asymptotic properties of the ECF estimator θ̂  have been examined by 
Feuerverger and McDunnough (1981a). The basic result is that θ̂  is strongly consistent and 

asymptotically normal with covariance 
1'

11 ˆV V
n

θ θ

θ θ

−

−
⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞Ω⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

. The asymptotic efficiency 

of the ECF procedure depends essentially on the choice of { }ju . Feuerverger and 
McDunnough (1981a) argued that in some cases one can obtain full asymptotic efficiency of 
the procedure (in terms of achieving the Cramer-Rao lower bound) by selecting the grid of 
points { }ju  to be sufficiently fine and extended. 
 
Besides being a GMM method, the ECF procedure is also equivalent to the maximum 

likelihood method. The likelihood equation is log ( ) ( ) 0n
f x dF xθ

θ
∂

=
∂∫ , or alternatively 

log ( ) [ ( ) ( )] 0n
f x d F x F xθ

θθ
∂

− =
∂∫ . This last equation may be transformed. Using Parseval 

identity, we obtain a Fourier domain version of the likelihood equation: 

( )[ ( ) ( )] 0nw u u u duθ θφ φ− =∫ , where log ( )1( ) exp( )
2

f xw u iux θ
θ π θ

∂
= −

∂∫ , the Fourier 

transform of the score function log ( )f xθ

θ
∂

∂
, is the optimal weight. Obviously, when the 

likelihood function has no closed form expression, the optimal weight is unknown. 
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