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Abstract 
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We propose a coherent unified approach to the study of the linkages among economic 
growth, financial structure, and inequality, bringing together disparate theoretical and 
empirical literature. That is, we show how to conduct model-based quantitative research on 
transitional paths. W ith analytical and numerical methods, we calibrate and make tractable a 
prototype canonical model and take it to an application, namely, Thailand 1976-1996, an 
emerging economy in a phase of economic expansion with uneven financial deepening and 
increasing inequality. We broadly replicate the actual data, test the model formally, and 
identify anomalies. 
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1. INTRODUCTION 

We propose a coherent unified approach to the study of the linkages among economic 
growth, financial structure, and inequality. Of course, the relationship between financial structure 
and economic growth has long been studied both empirically and theoretically. Yet, on the one 
hand, empirical studies have been mainly focused on statistical relationships without a serious 
study of underlying mechanisms that generate the observations. On the other hand, most of 
theoretical studies have depicted clean but simple mechanisms without serious consideration 
having been given to the models’ quantitative predictions. The same dichotomy between theory 
and empirical work exists in the literature on inequality and growth. 

Early seminal empirical contributions focusing on growth and financial structure are 
Goldsmith (1969), Shaw (1973), and McKinnon (1973). A more recent empirical treatment is 
King and Levine (1993). This body of empirical work establishes that financial deepening is at 
least an intrinsic part of the growth process and may be causal-that is, repressed financial 
systems harm economic growth. Theoretical efforts at modeling growth and endogenous financial 
deepening include Townsend (1978, 1983) and Greenwood and Jovanovic (1990) (hereinafter 
referred to as GJ). These models posit costly bilateral exchange or intermediation costs-for 
example, a fixed cost to enter the formal financial system and marginal costs to subsequent 
transactions. Other theoretical contributions such as Bencivenga and Smith (1991) turn 
intermediation off and on exogenously and have an external effect that makes growth with 
intermediation higher. Saint-Paul (1992) features limited diversification and multiple equilibrium 
growth paths, some with developed financial systems and specialized technologies and others 
with the opposite. In turn, Acemoglu and Zilibotti (1997) show that capital accumulation is 
associated with increasing intermediation and that better diversification, which comes with higher 
levels of wealth, reduces the variability of growth. 

Likewise well known are seminal contributions on growth and inequality. Kuznets (1955) 
posited that growth is associated with increasing and eventual decreasing inequality. Interest and 
controversies, especially with respect to cross-country regressions, have continued ever since. A 
recent paper, Forbes (2000), confirms previous studies that high (initial) inequality is associated 
with low subsequent long-run growth but finds that the relationship is the opposite for the medium 
term. The micro mechanics that underlie Kuznets’s assertion have been made clear in the 
contributions of Mookherjee and Shorrocks (1982). As with income growth, a Theil index of 
inequality can also be decomposed into within- and across-group changes. It consists of changes 
in inequality within groups, population shifts between low- and high-income groups, and changes 
in income differentials across these groups. These decompositions have established, for example, 
that in periods of nontrivial growth in Mexico and Brazil, increasing inequality (and, eventually, 
decreasing inequality in Brazil) are associated with changing returns to education and changing 
regional or urban-rural income differentials (and, in Brazil, inflation). See Bouillon, Legovini, 
and Lustig (1999) and Ferreira and Litchfield (1999), respectively. In Taiwan and Chile, growth 
coupled with an apparently stable income distribution appears to be the result of offsetting 
structural forces. See Bourguignon, Foumier and Gurgand (2001) and Bravo, Contreras, and 
Urzua (1999), respectively. Resting separately from this strand of the empirical literature are the 
deservedly well-known theoretical contributions more motivated by Kuznets’s original assertion 



-5- 

that growth may bring increasing, and eventually decreasing, inequality-namely, Aghion and 
Bolton (1997), Piketty (1997), Banerjee and Newman (1993), and Lloyd-Ellis and Bemhardt 
(2000). 

We have a concern about this dichotomy between theories and empirical studies. Although 
most of the theoretical models characterize economic growth with financial deepening and 
changing inequality as transitional phenomena, typical empirical research employs regression 
analysis to find a coefficient capturing the effect of financial depth or inequality on growth. The 
implicit assumptions of stationarity and linearity are incorrect, even after taking logs and lags, if 
the variables of actual economies lie on complex transitional growth paths, as they do in the 
theoretical models. Using artificial data generated by a canonical model that by construction 
displays transitional growth with financial deepening and increasing inequality, we can sometimes 
replicate the typical empirical results of the literature: financial deepening appears to lead to 
subsequent higher growth, and inequality to subsequent lower growth. But statistical significance 
is weak and sensitive to initial history, time frame, the inclusion of covariates, and so on. 
Evidently regression coefficients are not informative about the underlying true relationships. In 
pointing this out, we add to the list of concerns which have been raised in recent literature-for 
example, in Banerjee and Duflo (2000). 

Taking a more constructive tack, we show how to conduct quantitative research on 
transitional growth paths-that is, how to test a model and learn something about actual 
economies from potential rejections. Our canonical model is based on GJ.* As a prerequisite for a 
numerical study, we need to characterize analytical properties as much as possible. GJ 
characterizes primarily the initial and asymptotic economy, but leaves the all-important 
transitions somewhat unclear. GJ also studies only the log utility function and does not take its 
characterization of the log case to data. Here we extend the model to include a wider class of 
CRRA utility functions. We characterize much of the transitional dynamics analytically and, in so 
doing, provide new results. The seemingly nonconvex technology of participation is shown, under 
some conditions, to be convexified by the optimal choice of portfolio shares between risky and 
safe assets. Thus, ironically, those risk-averse households and businesses without access are not 
condemned to low -yield, if safe technologies but rather shift toward risky enterprizes, especially 
as their wealth approaches a critical value. Related, the derived single-valuedness of portfolio 
choice and savings facilitates further research into transitional dynamics using numerical 
methods. These make clear the rich and potentially complicated dynamics not obvious in original 
GJ formulation. For example, overall inequality movement is not necessarily monotonic on the 

2There are a few other model-based contributions to empirical work on growth and wealth 
inequality. Alvarez and Diaz (2002) study evolution of wealth inequality in a nonstochastic 
neo-classical growth model with minimum consumption requirements and apply it to the U.S. 
economy. It is a calibration study of growth and inequality of wealth, but the growth rate is not 
affected by inequality of wealth because of perfect capital markets and identical incomes among 
households. Likewise De Nardi (2002) focuses on savings and bequests to explain the wealth 
inequality in the U.S. and Sweden. Hers is a steady-state calibration exercise based on an 
overlapping generation model. De Nardi (2002) also contains an excellent review of the 
inter-generational inequality literature. 
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growth path-it can increase, then decrease, and then increase again as it moves slowly toward its 
asymptotic steady state. Financial deepening and growth are not monotonic either. 

With the model made tractable, we take it to an application, namely, Thailand during 
1976-96, an emerging economy that was in a phase of economic expansion with uneven financial 
deepening and increasing (and then decreasing) inequality. The Thai economy serves as a 
prototypical example of the growth and inequality phenomena, pervasive in other countries, that 
motivate the growth, financial deepening, and inequality literature. Using the Thai 
Socio-Economics Survey (SES), Jeong (2000) finds that growth and inequality are strongly 
associated with financial deepening. We emphasize, however, that our methods are not peculiar to 
Thailand and we hope to extend the analysis to other countries. 

In the spirit of the business-cycle literature, we calibrate the parameter values. Thus, the 
benchmark parameters are set from several sources. Data on the yields of relatively safe assets or 
occupations-5.4 percent per year for agriculture-and idiosyncratic shocks for business come 
from the Townsend-Thai data.3 Risk aversion is set at values typically found in the financial 
economics literature, and the real rate of interest implied by a preference for current consumption 
is set at 4 percent. Aggregate shocks are difficult to pin down, and we utilize the observed GDP 
growth rate over the sample. The marginal costs of utilizing the financial system are set at low 
values, but the higher fixed cost of entry is such that, as in the Thai Socio-Economic Survey 
(SES), 6 percent of the Thai population would have had access to the financial system in 1976, 
using a distribution of wealth estimated from the same 1976 SES data. The model is simulated at 
these and nearby values to deliver predicted paths, which can be compared to the actual Thai data. 
Note that we are calibrating a non-steady-state stochastic model. The business-cycle literature 
concerns stochastic steady states, not transitions. There is a literature on transitions or 
out-of-steady-state dynamics devoted to the study of depressions, but the models are deterministic 
(e.g., Hayashi and Prescott (2002)). 

First, we look at the average prediction of the model. It is broadly consistent with the 
actual pattern of growth with increasing inequality along with financial deepening. However, 
although the simulated expected participation rate and the Theil index (an inequality measure) in 
the model almost trace out a smoothed version of the actual Thai data, the simulated expected 
GDP growth rate is lower than the actual Thai path. We vary the key parameters and conduct 
robustness experiments. 

Because the actual path of the Thai economy is imagined here to be just one realization of 
many possible histories of the model economy, the actual Thai path should differ from the 
expected path of the model. We construct a metric of closeness between a simulated path and the 
actual data, considering the growth rate, financial deepening, and inequality over the entire 
1976-96 period as one particular realization. We pick the best-fit simulation under this metric. 
The best-fit simulation is not an outlier among all the simulations. Therefore, in this sense, the 
model does replicate the actual data well. However, the best-fit simulation shows a reasonable 
match with GDP growth rate and financial deepening, while missing some of sharp upturns of the 

‘See Townsend and others (1997). 



-7- 

data. Inequality in the model misses the eventual downturn of the data and has more erratic 
movement. 

Next, we examine whether the actual Thai data lie within a confidence region generated by 
the model, using a x2 statistic constructed from means and covariances of model-generated 
histories. The model imposes sharp restrictions on the data. Indeed, at the benchmark parameter 
values, the model is rejected. We turn our attention to the source of the rejection. We decompose 
the relative successes and failures into within-variable and across-variable components. The 
model fits Thai financial participation the best and Thai inequality the least closely. Likewise, the 
model does better with the observed cross-variable relations between growth and financial 
deepening, and between inequality and financial deepening, but does worse with the observed 
relationship between growth and inequality. 

Overall, our findings are favorable to our canonical model but not completely satisfactory. 
Of course, we are not unaware of the tension in this paper between the working out of the details 
of a structural and well articulated but highly abstract version of reality, on the one hand, and its 
serious application to Thai data on the other. But the goal here is to show that these two pieces 
can be brought together. This, we believe, is the way to make progress toward understanding the 
true relationships among endogenous financial deepening, economic development, and changing 
inequality. 

II. MODEL 

A. Notation 

There is a continuum of agents in the economy as if with names indexed on the interval 
[O,l]. At an initial date t = 1, they are all identical in preferences and technology, with, for 
expositional purposes, identical initial wealth kr > 0. Below this will be generalized to include an 
initial nondegenerate distribution of wealth drawn from the data. The basic decision problem of 
each period can be simply stated. An individual who owns assets or wealth Ict at the beginning of 
period t will decide consumption ct and savings or investment st (into various assets or 
occupations) in period t with ct = Ict - st. Utility is then given by: 

El rC P”-lu(ct)l (1) 
t=1 

with discount rate4 p, 0 < ,D < 1. While GJ restricts attention to the log contemporaneous utility, 
U(Q) = log ct, we analyze as well the constant relative risk aversion (CRRA) utility function 
U(Q) = cj-“/(l - g) for g > 0.5 

41n principle, we can allow preferences u(.) and the discount rate ,6 to vary over individuals as 
well. That is, we would be able to compute transition paths with additional diversity. 

5Note that this includes log utility as a special case, fl = 1, and of course higher risk aversion as 0 
increases. The instantaneous utility function is increasing, u’ > 0, and concave, u” < 0. Since 
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There are two technologies of investment in the economy. A safe technology returns 
output next period at constant rate 6. A risky project returns output at a per unit but variable 
stochastic rate of 19~ + et, where Bt is a common shock across technologies and et is an 
independently and identically distributed (i.i.d.) project-specific idiosyncratic shock with the 
mean of zero. One can think of the safe technology as subsistence agriculture and the risky one as 
nonfarm entrepreneurship, for example. We often use nt E Bt + et to denote the total per unit 
return on the stochastic technology.6 

The cumulative distributions of Bt and et are time invariant and denoted as F(8,) and 
G(t,), respectively. The supports of these distributions are assumed to be compact.7 Thus we 
specify the lower and upper bounds and the domains and ranges of the distribution functions: 

Assumption 1. Let Cl = [e, e] c R++ and F : 0 + [0, 11. Let E = [g, ?] c R and G : E + [0, 11, 
with E[c,] = 0. 

The cumulative distribution of the total return qt E [q, ~1 is denoted as H : Cl + E + [0, 11. 
Let the contemporary state for a household be Wt = {et, et}yut E R = 0 x E. Let 
wt = {wj}& c Rt denote history of shocks up through t, where wu is trivially specified. 

If an individual is on his own, not a member of the financial sector, then he invests some 
portion & of total savings’ st at date t into the risky asset or occupation, and his capital stock at 
the beginning of the next period t + 1 will be 

k+1 = %(d@t + et) + (1 - $t)S). (2) 

Of course, the total savings is nonnegative, st 2 0, and the fraction invested in the risky asset is 
between zero and one, 0 5 & 5 1. Note also that this makes capital Ict+r and consumption ctfl 
functions of history of shocks through date t, wt, not contemporary shocks at t + 1. 

If an individual is a participant of the financial sector, then that individual deposits savings 
st in a bank or purchases shares of a financial institution, and then lets the institution make 
decision about the type of his project. But before the bank pays interest (next period), the bank 

free disposal allows ct = 0, depending on parameter values, the instantaneous utility can take on 
the value -00, that is, u : lR+ + Iw U {-oo}. Note also that u is continuous on its domain. It 
satisfies the Inada conditions: limC+a u’(c) = co and limC.oo u’(c) = 0, and thus, at each t, 
optimal consumption never becomes zero (and savings never equals all of wealth). In practice, 
then, we can consider the domain and range of u to be R++ and IR, respectively. 

60f course, the assumption of two technologies, one riskless and one certain, though typical of 
the literature, begs for a generalization to multiple technologies corresponding to different sectors 
and regions, with the idiosyncratic and aggregate shocks to these technologies pinned down by 
further empirical work. 

7This assumption is also the part of assumptions A and B of Greenwood and Jovanovic (1990). 

*Since this is a putty-putty model, the saving rate is a fraction of current wealth, not of 
contemporary income. 
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discovers the true aggregate return tit (as if by sampling a very large but finite number of projects, 
then using the law of large numbers). In addition the bank can pool the returns on the individual 
projects it operates to smooth away completely9 variation from the idiosyncratic shocks ct. The 
returns on shares of projects then vary only with the aggregate state. An alternative interpretation 
is that the household puts money on deposit but then borrows to finance a project under advice 
from the bank. Average repayment is determined by either 19 or 6. But if risky projects are 
undertaken, low c households repay less, as if receiving insurance, and high E households repay 
more, as if paying premia, so as to repay 19 on average. That is, the debt repayment is allowed to 
vary with idiosyncratic shocks. 

A key decision at the very beginning of each date t is whether to enter the financial 
system. There are transaction costs as in Townsend (1978). First, there is a one time entry fee or a 
fixed cost q > 0 incurred at t. Second, in each period, a depositor or a shareholder gets per unit 
return r(0,) = y max(S, et), where (1 - y) is a variable cost with y E [0, l]; hence the variable 
cost is a cost proportional to the rate of return. Thus when an individual deposits savings st in the 
bank at the end of period t, his capital stock ,&+I of the next period will be 

k t-t1 = w”@). (3) 

Greenwood and Jovanovic (1990) and Townsend (1978) show this return is consistent with that 
offered by a competing set of financial intermediaries. We do not pursue that decentralized 
interpretation further. Of course, this specification of transactions costs begs for serious 
generalization and extension, to other kinds of costs, to distinguish among various possible kinds 
of involvement in the financial system. We can allow heterogeneous costs across different 
households/businesses, and indeed below we do allow costs to vary with education and 
urban/rural status. 

We assume with Greenwood and Jovanovic (1990) necessary conditions that assure the 
bank has indeed a real informational advantage despite marginal costs, and that the risky asset is 
potentially profitable enough to attract positive investment, that is, the expected risky return 
dominates the safe return. even without advance information. lo 

Assumption 2. 
qT(et)] > qe,] > s > 0. (4) 

We define dt as the binary participation or selection decision at period t: dt = 0 if a 
household stays outside the financial system at t, and dt = 1 if it participates in the system. Thus 
a policy for a household is a vector xt = (d,, St, &) at period t over that entry decision as well as 

‘We recognize that this specification of the financial sector’s advantages is too extreme. One 
could imagine less than perfect risk sharing, constrained by default or private information 
considerations, for example, and imagine less than perfect information about forthcoming 
realizations, as the number of bank clients engaged in any given activity (sector, region) may be 
limited and in any event past experience in a given activity is only a limited guide to future 
shocks. However, these assumptions do make the model tractable. 

“This is assumption C and part of assumption A of Greenwood and Jovanovic (1990). 
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over savings and technology choice. Note again that portfolio choice & of a participant, dt = 1, is 
trivially determined (as if recommended by the bank with 0 known). The policy space X is thus 
given by 

xt = (d,, st, $t) E X = (0, 1) x R, x [0, 11. (5) 

As noted, the initial capital level at t, kt, is a function of decision ZtPl and shocks wtel in 
the previous period, that is, 

b(w,wt-1) = St-1 [dt-c-(h) + (1 - dt-l)(cLlrlt-1 + (1 - 4t-I)@]. (6) 

We assume the initial capital level is positive, Icr(zu, wc) > 0. Savings cannot exceed wealth, and 
thus the feasible set for savings at t is not all of IR+ but rather [0, /&I for all t. More generally, the 
feasible set I for policies at t is written as 

(4, St, 44 = xt E Q-+-l) = (0, 1> x [o, h(zt-1+-l)] x [o, 11. (7) 

This set r is nonempty and compact valued, helping to ensure the existence of the optimal 
policies.’ I 

Consumption at t is denoted as ct E R+. Consumption and savings must satisfy the 
resource constraint, respecting the incidence of transaction costs for new entrants, 

Ct + St + qldt>dt_1 5 b(xt-1, W&l), (8) 

where ldt>dl-l is an indicator function that takes the value 1 if dt > dt-l, and 0 otherwise.12 By 
modifying this resource constraint (8), consumption at t can be written as a function of 
(xt-1, a-1, xt): 

C&-l&-l, xt) = k(Zt-hut-l) - St - qldt>dt_l. (9) 

We define utility function U as the discounted sum of instantaneous utilities for policy 
sequence z = (~1, ~2,. . .) 

U(z0, wo, x) = El e pt-y~(ct(~t-l, Wt-1, %>)I. (10) 
t=1 

We thus write the consumer’s infinite horizon problem as 

u*(zo, wo) = SUP U(zo, wo> x>, 
1: 

(11) 

l1 See the working paper, Townsend and Ueda (200 1). 

121n practice, dt will be zero for several periods and then jump to one and stay there. That is, no 
one will ever exit in this transitional growth model, and either dt > dtpl or dt = dtpl. See below. 
Of course, (8) will hold at equality. 
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given (x0, wo) and Icl(zo, wo), and subject to the feasibility constraint (7) at each t.13 Note that U 
in principle can take the values foe; 0 : II%? --+ R. 

We will analyze the effect of financial development in this unbounded growth model. 
However, we restrict the economy not to explode: U(ZO, wa, X) < 00. This is assured by the 
following assumption, limiting the expected return to be smaller than l/,0, adjusted by risk 
aversion14, 

Assumption 3. pE[(r(d))l-u] < 1. 

Note that assumption 3 applies to participants. By the same argument, PE[ql-“] < 1 is the 
analogue condition l5 for nonparticipants. This latter assumption is not necessary, however, 
because everyone eventually participates in the financial system, as we show below. 

Since we focus on perpetual growth, it seems natural to ensure that the optimized utility16 
has a real value bounded from below, U*(xo, wo) > --oo. A sufficient condition is indeed to make 
the safe return sufficiently high, that is, greater than l//3, equivalently, 

Assumption 4. ,L3S > 1. 

Note that the assumptions 2, 3, and 4 place a restriction on parameter values for the 
calibration exercise below. 

B. Value Functions 

Following the notation of Greenwood and Jovanovic (1990), we define V(k) as the value 
for those who have already joined financial intermediaries today, and W(k) as the value for those 
who have not joined today but have an opportunity to do so tomorrow. Also, we introduce W. (Ic) 
as the value for those who are restricted to never joining. ” Explicit forms of these value functions 
are: 

V(k) = max u(kt - St) + /I St J ma@%+d, V(h+,)}dF(&) 02) 

13Basically ICI and do are given, but for consistency of notation we imagine that x0 = (do, so, tie) is 
given, and then given wo, ICI is determined. 

14When CJ = 1, assumption (3) becomes ,6 < 1. 

“This is a slightly stronger condition, since the portfolio choice underlying the assumption is 
assumed to be the risky one, to get the maximum return. 

16Assumption 3 together with some measurability requirements, guarantees existence of an 
optimal policy.‘See the details in the working paper, Townsend and Ueda (2001). 

17With some additional technical assumptions we can establish equivalence of solutions between 
the original problem (11) and this value function approach. See the working paper, Townsend and 
Ueda (2001). 
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subject to equation (3), 

subject to equation (2), and 

Wok) = y$ u&t - St) + P J Wo(b+l)dH(r7,) (14) 

subject to equation (2). 

We can also establish, as in Greenwood and Jovanovic (1990), that participants will never 
terminate membership. l8 

Proposition 1. Wo(&) 5 W(k,) < V(kt); in particular, V is the only relevant brunch on the 
right-hand-side of the functional equation (12). 

Equivalently, we also introduce the value for a nonparticipant who faces the entry decision 
today as” 

where 

z&d = dy3F$t 216% - St - qldt>dt-1) + 0 9 > J f(k,+l)dHh), (15) 
f(h+1) = V(k,,l) = v(sde,)) if dt = 1, 

= Z(h+l) = Z(st(hrlt + (I- h)S)) if 4 = 0. 
(16) 

The value for new participants today can be written as 

V(k - 4) = m3;x76(h - 4 - St) + P J V(b+l)dF(R). 

Thus, using value Z(lct), W(lct) can be also written as 

(17) 

‘*See the proof in the working paper, Townsend and Ueda (2001). 

lgNote that in the notation of Greenwood-Jovanovic formulation, the entering decision is made 
next period, not today, while in our equivalent formulation it is made at the beginning of each 
period. Thus Z(/C ) t can be also defined simply as Z(lct) = maxd,(o,l>{W(lE,), V(kt - q)}. 
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C. Solutions of Value Functions and Policies 

Below we display analytical, closed-form solutions for value functions V(k) and W,(k) 
and their associated policy functions. *’ These will then be used in computation. However, only 
numerical solutions are available for W(lc) or Z(k). The numerical algorithm is described in the 
appendix. 

Solution of V(k), the Participant’s Value Function, and the Associated Policies 

A participant’s value function is easy to solve for under log utilities. By guessing and 
verifying as in Greenwood and Jovanovic (1990), we get the analytical formula satisfying the 
functional equation (12). 

V(k) = & ln(l - P) + pi,,2 lnP + J 1 
lnr(H) dF(0) + - 

1-P 
Ink. (19) 

The saving rate p, defined as st = pkt, is equal to p for the log utility case. 

More generally for CRRA utilities (g # l), we can also get the analytical formula of the 
value function V(k) and the saving rate p*: 

V(k) = (1 - jb*Tbk:l-(j 
1-Q ’ 

p* = {pq-(e)l-yp? 

See the derivation in the working paper, Townsend and Ueda (2001). 

(20) 

(21) 

Solution of We(k), the Value Function for Those Never Allowed to Join the Bank, and the 
Associated Policies 

Similarly, we can obtain analytical solutions 21 for Wo(lc), the associated optimal saving 
rate p**, and the optimal portfolio share in the risky technology $**. For CRRA utility, 

w (k) = (1 - jd**)-“pc 
0 

1-o : 
(22) 

and 
P ** = {pE[e**(q)l-“]}l/“, (23) 

2oWe omit time subscript t in the value functions because individuals face the same problem in 
each period given the current wealth level. 

2’Again see Townsend and Ueda (2001) for details, including conditions for boundary values of 
b** meitioned below. 
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where e**(n) = $**n + (1 - $**)b is the optimized per unit return. We can show the uniqueness 
of the optimal portfolio choice #**, which can take on the boundary values. Conditions for the 
boundary values are given by 
i) $** = 0 if E[q] < 6, i.e., the safe return is sufficiently high (sufficient condition), and 
ii) # ** = 1 only if E[l/qD] 5 l/pS, if the safe return is sufficiently low (necessary condition). 

For the log utility, CRRA at o = 1, 

We(k) =& ln(l - P) + 

J In e**(q) dH(q) + & Ink 
(24) 

and the optimal savings is ,u** = /3. 

III. ANALYTICAL CHARACTERIZATION 

A. Motivation 

The entry cost is a one-time fixed cost and this introduces a fundamental nonconvexity. In 
particular, the value function might not be concave. Put differently, the value function V(k) is 
strictly concave after entry and the value function W(k) may be strictly concave before entry, but 
still the region of outer envelope (the value function Z(lc)) that determines the entry point might 
not be concave (see2’ figure 1). If Z(lc) is not concave, W(lc) is no longer assured to be concave 
by definition (18). Further, if the value function has this nonconcave part, the optimization 
problem is not strictly concave and it is not apparent that the policy functions are single-valued.23 

But the risky asset naturally allows some convexification. Indeed, we show that under 
quite general assumptions the optimal portfolio choice by an individual makes the value function 
concave and thus policy functions are single-valued. That is, households want to eliminate the 
nonconcave part, and any nonconcave part could be smoothed out by a lottery. The risky asset is a 
natural lottery. Sufficient assumptions to make this mechanism work are hence large variations of 
the risky return and strong risk averseness. 

B. Transitional Value Functions and the Associated Policies 

Assumption 5. The participant’s saving rate p* satisfies 

log(1 - /AL+) 2 ; log(l - P) + 0-l -log 1-i 
0 ( 1 

(25) 

22For definitions and notations in the figure, see the appendix. 

23Proof of concavity is ambiguous in GJ, and single-valuedness of the policy functions seems 
implicitly assumed in GJ and necessary for numerical computation. 
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Figure 1. Nonconcave Function Z(k) 

r;: < E[e(q)]plc 
Condition (Al) 

This assumption is sufficient to assure proposition 2, which follows below, that the value 
function Z(k) is concave. For 0 = 1 (log case), the right hand side of (25) is log(1 - /3), but the 
left hand side is also log( 1 - /3) because p* = p in the log ut’l’t i 1 y case. Hence this assumption is 
always satisfied in the log utility case. 

Assumption 5 is another restriction on the growth rate. It says that the saving rate cannot 
be too high, given the risk aversion parameter CT, the discount rate p and the return from the safe 
asset S. Since the saving rate is an endogenous variable, assumption 5 essentially pins down the 
curvature of utility function and variance of shocks. 

We can see this point more clearly by simplifying assumption 5. Notice that the right hand 
side of (25) is just a linear combination of log( 1 - ,D) and log (1 - i) . By assumption 4, 
1 - /3 < 1 - f. Thus together with CJ > 0, the right hand side of (25) is at most log (1 - i) . 
Hence the stronger but sufficient and easy-to-check version of assumption 5 is 

pa<;. 

By the closed solution of ,u* in (21), this condition is equivalent to 

(26) 
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or 

Note that sufficient condition (27) is only slightly stronger condition than assumption 3, 
which restricts the saving rate so that the life time utility is bounded from above. Also, the impact 
of (28) is such that, given the discount rate p and the safe return b, either the curvature of the 
utility function g or the variance of aggregate shocks should be sufficiently large so that (28) is 
satisfied.24 The first parameter 0 makes people risk averse so that the outer envelope in figure 1 
has a lot of curvature in such a way that a small amount of randomness allows convexification. 
The second provides a sufficient amount of randomness in nature, to span the otherwise 
nonconcave part25 

Through the choice of his portfolio share in the risky asset, an individual can “control” the 
randomness of his capital at the next period and hence his lifetime utility from the next period on. 
That is, if the aggregate shock has sufficiently large variance, he can choose his desired level of 
randomness over next period’s capital. If there remained a nonconcave part in the value function 
next period, random returns from his investment would make his expected lifetime utility today 
bigger relative to nomandom investment. This assumes the savings are sufficiently low that the 
household is operating both today and tomorrow in a similar neighborhood of capital. Another 
way to see this result is to note that the outer envelope is supposed to reflect discounted expected 
utility for each given wealth Ic, but evidently higher values are possible, if the envelope is 
nonconcave, by a little more randomization in Ic today, something possible with greater stochastic 
investment. This need for randomization would imply that we have not found the optimal policy 
yet and thus that further iteration of the value function would be called for, so as to eliminate the 
nonconcave part eventually. In sum we have, 

Proposition 2. (i) Z(k) is monotonically increasing, and under assumption 5, is concave. 
(ii) Z(k) is continuous and differentiable on I!%++. 
(iii) Given kt-l, dt-l and dt the optimalpolicy (F~, g3 t is single-valued, and pt(k) and&(k) are ) 
continuousfunctions on R++. 

The remaining question is whether the participation decision is single-valued. 

Assumption 6. People join theJinancia1 system whenever they are indifferent26: d,(k) = 1 when 
W(k) = V(k - 4). 

24The condition (28) is easily satisfied if we could lower the mean of r(19) freely. However, this is 
not the case, because assumptions 2 and 4 requires /~E[T(@] > 1. 

25A similar argument should apply to the range of the idiosyncratic shock-recall that our 
condition is sufficient and is based on analytical formulas for the saving rate for entrants, for 
example. 

26We adopt an assumption as in the standard competitive theory of firm in which firms are 
considered to operate under zero profit. 
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We thus let k* denote the critical capital level, that is, the least capital level at which the 
values of W(k) and V(k - a) coincide. This level is, of course, uniquely determined. Under 
assumption 6, the participation decision for those whose initial asset level is less than the critical 
capital level becomes single-valued and is monotonically increasing27 in k. That is, if a household 
starts with small capital, it will be outside the financial system until he accumulates wealth greater 
than or equal to the critical capital level k*, and then it will join the financial system and stay 
inside forever. 

C. Characterization of the Saving Rate and the Portfolio Share 

Since nonparticipants prepare to pay the future fixed entry fee, their saving rate will be 
higher than participants. This is an extension of proposition 2 in GJ, and the proof is the same and 
is omitted here. Let the participant’s saving rate be denoted p* as in equation (21). 

Although it will be shown that everyone eventually joins the bank, those who have very 
little wealth act as if they would never be able to join the bank. Very poor people have almost the 
same value and policies as those who never have the opportunity to join the bank. These policies 
are the saving rate p** and the portfolio share 4** derived earlier. That is, in the short run, agents 
with very small capital spend little effort to accumulate capital to join the bank. We can extend 
proposition 3 of Greenwood and Jovanovic (1990) to include the CRRA utility case, but the proof 
is the same and we omit it. 

In sum, 

Proposition 3. (i) p > p* for nonparticipants. 
(ii) For all t > 0, there exists some k, sujfticiently small such that 

(a) suP&(o,k,] I b(wkl - P** I < t and (b) SUP~~(O,~,I 14(k) - d** I < t. 

D. The Asymptotic Economy 

Because the return is high compared to the saving rate, in the long run, roughly every 
household becomes rich and its wealth grows unboundedly. 

Lemma 1. (i) Participants in the bank almost surely accumulate their wealth to exceed any 
K < 00 in the long run as t + 00. 
(ii) Those who never join the bank almost surely accumulate their wealth to exceed any K < co 
in the long run as t -+ 00. 

Proposition 4. Everyone eventually participates in the bank, almost surely, and hence 
W(k) > Wo(k)for all k. 

This proposition implies that no one actually takes the value of Wo. 

27Single-valuedness and monotonicity for all levels of capital can be shown by using the concavity 
of Z(k). 
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E. Population Distributions 

Although each household’s return is not affected by others’ choices, it does depend on its 
wealth. As a consequence, macroeconomic variables such as the growth rate and inequality 
measures vary with the wealth distribution. 

The cumulative transition function from period t capital k to period t + 1 capital k’ is 
defined as 

Q(k’; k) G prob[kt+l 5 k’lkt = k]. (29) 

If we know the optimal policies (d,, st, &), which are functions of k, and if we are given k and k’, 
we can then analytically construct *(k’; k) defined in (29). For example, if we focus on the 
transition of nonparticipants only, this cumulative probability should be truncated at the critical 
capital level k’ at which people join the financial intermediary. That is, given this period’s capital 
level k, we should integrate the above cumulative transition function with respect to next period’s 
capital over [0, k’] for those who could never have enough capital to join the bank next period, and 
over the restricted range [0, k*] for those who have a positive chance to join. We can thus derive 
the cumulative transition function for nonparticipants \II( k’; k). 

Then given the initial distribution of the wealth, MO, the wealth distribution at each period 
t 2 1 for nonparticipants is recursively derived. Let Mt (k’) measure the size of the population 
(cumulative distribution) in period t, who are outside of the intermediated sector at t and will have 
a capital stock kt+l < k’ in period t + 1. Then, 

(30) 

The fraction of agents who stay out of the bank at t is thus written in terms of distribution of 
nonparticipants at t - 1 with capital level at t less than the critical level to join, that is, Aft-,(k*). 

In a similar manner, we define Gt (k’) as the population distribution of the participants at t 
who have a capital stock k t+l 5 k’ in period t + 1. Note that a participant’s wealth at t could be 
less than k* due to payment of the fixed cost q. 

Now with these distributions, we can find the ex post gross growth rate of capital kt+l/kt 
from t to t + 1, namely (31) below for those who are outside of financial system both in period 
t - 1 and t, 

sw(k 6 4 = {dW(h + 4 + (1 - $(kt))Qp(kt), 
(32) below for participants both in period t - 1 and t, 

(31) 

gp(kt, et> = @t)~*, (32) 
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and (33) below for new participants 28 who were outside in period t - 1 but join the bank at t, 

gn(kt,Qt) - 
m)(kt - 4) p*, 

k 
t 

(33) 

The economy-wide gross growth rate is easily obtained as the evolution of the population 
average wealth level. Let Kt denote average wealth level for the economy. It is defined as: 

Kt = J O” kdA&(k) + J O” kdA&(k) 
0 0 

(34) 

From this, the economy-wide gross growth rate is calculated essentially a K,+,/K, apart from 
entry costs. That is, the economy-wide growth rate is basically a wealth weighted average of 
growth rate of each household, so it reflects rich households’ growth rates more than poor 
households’. This is clear if we write K,+, in terms of period t's population distributions Mt-i 
and tit-i, as below:29 r s k* 

E[Kt+,l = JJ[J s&k Q, +dJL,(k) + O3 g&k @kd&l(k) c e 0 J k* 

J 
(35) 

+ Do g,(k, B)kdtit-l(k) dF(B)dG(t). 
0 1 

The expected economy-wide gross growth rate E[Kt+,]/Kt in transition can be analytically 
derived from formulas (34) and (35). We compare this statistic to the GDP growth rates in Monte 
Carlo simulations below. Note that, as t --f co, it approaches p*E[r(&)], the long-run, 
steady-state growth rate in which (almost) everyone participates in the financial system. 

Again, these population distributions and statistics are analytically obtained, once we find 
the optimal policies (d,, st, &) and initial distribution MO. In other words, we do not need to draw 
large samples to construct these statistics in computation. We do need to approximate the 
transition matrix numerically, however.30 

IV. THE THAI ECONOMY: GROWTH, INEQUALITY, AND FINANCIAL DEEPENING 

The economy to which we take the model is the Thai economy, concentrating on its 
emerging market growth phase, 1976-96, prior to the financial crisis of 1997. Needless to say, we 
do not attempt in this paper to analyze the crisis itself. Rather, we concentrate on what seems to 
have been the prior transition period, to see if we can understand this through the lens of the 

28Note that the new participants must pay fixed cost q before they save. 

29To distinguish each integral, we write the domains of integrals explicitly here. 

3oWe can assess the accuracy of these analytical calculations and Monte Carlo simulations by 
comparing corresponding statistics. 
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model, as a financial transition. We also take the view that to understand the crisis and prospects 
for recovery one must understand the growth that preceded it. 

We use various, multiple sources of data for calibration, estimation, and general discussion 
of the Thai economy. The national income accounts are constructed by the National Economic 
and Social Development Board, the NESDB. Credit and monetary aggregates as well as savings 
are provided by the Bank of Thailand. A complete village census with interviews of headmen was 
conducted by the Community Development Department, the CDD, biannually starting in 1986. A 
nationally representative Socio-Economic Survey covering income and expenditures, the SES, has 
been implemented at a substantial scale starting in 1976 with over 11,000 households, then 
repeated in 1981, and finally biannually after 1984. 31 In addition, we draw on the Townsend-Thai 
data,32 a specialty cross-sectional May 1997 survey of 2880 households in the central and 
northeastern regions, with measures of income, wealth, financial sector participation, savings and 
credit, and other items. 

The Thai economy displays growth, financial deepening, and increasing (and eventually 
decreasing) inequality. Before the financial crisis of 1997, the Thai economy had grown rapidly. 
The NESDB numbers show growth in gross domestic product, ranging from 3 to 7 percent from 
1976 to 1986, then a relatively high and sustained average growth of 8.3 percent from 1986-94, 
especially high in the 1987-89 period, and finally tailing off somewhat to 4 percent by 1996. The 
per capita income numbers from the SES are similar, with an overall average at 4.96, relatively 
low at 1.98 from 1976-86, then high at 8.78 from 1986-92, and lower but still high at 6.94 from 
1992-96. 

Overall financial deepening is apparent in macro aggregates. The ratio of M2/GDP rises 
steadily, surpassing the US by 1992. Similar movements are apparent in M3/GDP, rising even 
faster in the 1988-94 period and also total credit/GDP, as reported in Klinhowhan (1999). Total 
credit extended by commercial banks increased with a particular surge in credit received by firms 
in the 1986-90 period. Likewise, restricting attention to rural areas, credit from the Bank for 
Agriculture and Agricultural Cooperatives (BAAC, a rural development bank) as a percentage of 
agricultural output increased throughout the 1981-97 period. 

At a more micro level, from the CDD data, the fraction of village headmen reporting 
access to commercial bank credit rises from 0.26 to 0.41 in the 1986 to 1994 period, and to the 
BAAC from 0.80 to 0.92. At the level of households in the Socio-Economic Survey, respondents 
are asked whether they had changes in assets and/or liabilities from various financial institutions 
due to a transaction by any member in the previous month. Though no doubt noisy and off in 
levels, this measures rises from 6 to 26 percent, 1976-96. This is the measure of changing 
participation we use below. Further, we can stratify by occupation, education, and urban/rural 
status and see the same upward trend on this extensive margin for all groups. Though the access 
numbers are higher for those in urban areas, those with college education, and nonfarm groups 

31We interpolate the bank access and inequality variables linearly for missing years. 

32Detailed information is available in Townsend and others (1997), and also at the web page: 
http://www.spc.uchicago.edu/users/robt. 
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(wage earners, business owners), the expansion is particularly evident for villages, from 8 to 35 
percent, those with primary education, from 1 percent to 25 percent, and farmers, 6 to 24 percent. 

We also emphasize the apparent effect of wealth constraints within each of these 
categories. We use the SES data to extract a latent-index measure of wealth and thus plot 
estimated wealth against that same SES measure of financial participation. Specifically, as in 
Jeong (2000), the SES provides ownership information on twenty household assets, and the latent 
variable is constructed to try to best explain the cross sectional variance. This is given a crude 
value in Thai baht by multiplying against the rental value of the respondent’s house, though one 
should not take the assigned values literally (and we rescale below relative to the transactions 
cost). Then average access (again, transaction in the previous month) can be plotted by wealth 
deciles. In every survey year, even as late as 1996, these profiles are distinctly upward sloping 
with somewhat higher slopes at relatively high wealth levels. The theory with no heterogeneity in 
costs would predict a O-l jump up at some threshold wealth level but mitigated locally by the 
incurred fixed costs. We take these figures as prima facie evidence of wealth constrained choice 
of access to the financial system, as the theory would suggest. Of course the theory is giving us 
the structure to interpret the data. Causality cannot be inferred from the data alone. 

As the model would suggest, beneath the growth of income and financial deepening lies 
relatively high and increasing inequality. The Gini measure of income inequality computed from 
the SES rises slowly but steadily from 0.42 in 1976 to 0.54 in 1992, then falls in the end to 0.50 
by 1996. This is high for Asia, but lower than in some Latin American countries. This inequality 
reflects disparities in regional and rural/urban growth rates and appears to be related to factors 
discussed in various literatures, in particular, as we emphasize here, wealth-constrained access to 
the formal financial system. Logically, we now focuses on the financial transition. That is, we 
formally view the Thai economy through the lens of the model to see if we can interpret some of 
these data and document anomalies. 

V. SETUPFORNUMERICALANALYSIS 

In the following sections we report on quantitative properties of the model-based 
simulations. In this section, we fix reasonable values for the parameters, as in calibration exercises 
of the business cycle literature. Then we use numerical methods33 to compute the value and policy 
functions. In the following section, based on the data from Monte Carlo simulations, we carry out 
linear regressions and report the results. Afterward, we proceed to examine the model in three 
ways: average predictions, best-fit simulations, and confidence intervals. Finally we report on 
more detailed, micro level descriptions of our simulated data, decomposing inequality change and 
allowing heterogeneity in education and urban/rural status with a focus on participation rates. 

33The numerical algorithm is described in detail in Appendix B. 
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A. Setting Parameters 

We use income to capital ratios from the Townsend Thai data (Townsend and others 
(1997)) to estimate the technology parameters for those not in the financial system. The survey 
shows that the net return from capital investment in subsistence agriculture, which we regard here 
as a crude approximation to the safe project 6, at 5.4 percent in 1997. For the risky project we use 
the income/capital ratios for those in nonagricultural business (and again without access) at 9.7 
percent on average (see below for more discussion). We use the 1997 cross section data to set the 
support of the idiosyncratic shocks c as [-0.6,0.6] to mimic the difference between the top and 
bottom one percent returns in that year. That is, we used the range of returns or income to capital 
ratios from the bottom 1 percent to the top 99 percent (the more extreme tails no doubt contain 
noisy outliers). 

We set the value of the discount rate at ,8 = 0.96, following the business cycle literature.34 
We report the log utility case primarily, but in a later section, we also report CJ = 1.5 case as a 
robustness check. 

Pinning down the range of aggregate shocks turned out to be somewhat difficult. However, 
we know that the difference between the minimum and maximum of the real per capita growth 
rate from 1976 to 1996 is about 8.7 percent, and according to the model with its transactions cost, 
underlying variation of the aggregate shocks would be yet larger. Thus we set the range for the 
aggregate shocks 0 at 10 percent.35 For the mean o f 0, we vary the mean and pick one which 
minimized the sum of square errors, the squared sum of the difference between the actual Thai 
growth rate and the predicted analytic path of the mode1.36 

The fixed cost CJ is a free parameter, and we take it to be q = 5 in model units of capital. 
But by comparing the critical capital level k* in model units and Ic* in the actual data in Thai baht, 
we will find a scalar or “exchange rate” between model units and actual Thai baht. The critical 
capital level in model units is obtained by computing the value functions, namely k* = 15.37 The 
critical capital level in the actual data is estimated using the Socio-Economic Survey and the 
observed fraction participating in 1976. That is, we use the wealth distribution of 1976 from 

34See, for example, Kydland and Prescott (1982). 

351f our model were a true underlying mechanism, the observed aggregate GDP growth rate (and 
TIP, if it can be calculated) would not be a process generated by a stationary and ergodic process. 
This means that the mean and variance of the GDP growth rate would not represent those of the 
underlying shocks. 

36However for the purpose of picking the mean 8, computation considerations require some 
approximations. We impose a saving rate of 0.965 and a portfolio share of risky assets of 0.3 
(both for nonparticipants), as these values are typically observed in computed paths for range of 
parameters we are considering. We also impose a loss of wealth of l/3 upon entry to the financial 
system , and finally we impose the observed path of participation in Thai data. 

37The fixed cost turns out one third of the wealth at entry point. This might seem too large, but if 
we take into account construction of branches and roads, it is not obvious. 
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Socio-Economic Survey (SES) of Thailand as the initial condition38 (in 1990 baht), again, 
following Jeong (2000). We also use information about participation in the financial system from 
the same Socio-Economic Suwey. According to that survey, the fraction of the population who 
had access to the financial system was 6 percent in 1976. The estimated cumulative distribution of 
wealth of 1976 shows that people who had wealth of more than 195,000 baht39 were 6 percent of 
the population in 1976. Since the critical level of the model is lc” = 15, we set the scalar or 
“exchange rate” as 13,000 baht per model unit capital (in 1990 baht) to generate 6 percent 
participation in 1976.40 

These parameters must satisfy assumptions described in the model section. For example, 
we made assumption 2, E[r(e)] > E[B] > 6. This condition implies that the variable cost 1 - y 
cannot be large, and so we assume a zero variable cost, 1 - y = 0 for the benchmark case, but run 
some robustness checks for other values (e.g., 2 percent). Also, we would like to see some 
variation in the function 4(k), so interior solutions of #** for We(L) are desirable. This is checked 
numerically, but essentially, the mean risky return E[8] with some adjustment for risk aversion 
cannot be much larger than safe return S.41 

All these numbers are summarized in table 1. 

Table 1. Benchmark Parameter Values 

(J9 6 0 E P Y 

1 5 1.054 [1.047,1.147] [-0.6,0.6] 0.96 0 

B. Value and Policy Functions 

Computed value functions are shown in figure 2. W(lc) is always between V(k) and 
W,(k). It approaches Wo(lc) as Ic goes to zero, and approaches V(k - q) as Ic goes to 00, as 
discussed earlier. The critical level of capital to join the bank is Ic’ = 15, where W(lc) and 
V(k - q) cross. 

38We include all 11,356 households and take sample weights into account. See Jeong (2000) for 
further discussion about estimation of wealth. Here, because the appropriate choice of the interest 
rate is restricted by the model, we do not adjust the wealth variable to be in present value terms. 
We construct the wealth distribution similarly for 1996, using all 25,111 households. 

391t is evaluated at the 1990 price level. 

401n simulations below, we need to approximate the initial wealth distributions. Assuming no new 
entrants in 1976, we divide the entire wealth distribution at k* = 195,000 baht into two parts, one 
below Ic* as the nonparticipants’ wealth distribution ALO (k) and the other as the participants’ 
so(k). 

41See more discussions in the working paper, Townsend and Ueda (2001). 
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The saving rate of nonparticipants increases with their wealth level up to near the critical 
level of capital that determines the entry decision, and then decreases slightly (see figure 3). This 
is due to consumption smoothing, preparing for the payment of the fixed fee. 

The portfolio share of risky assets varies in figure 3 as expected around the optimal level 
$** under IWO(k), the value function of those who never enter the bank. It is increasing first and 
then decreasing. It is, however, almost always larger than $**. Nonparticipants put their wealth in 
the risky asset as a natural lottery to convexify their life-time utility (value function). 

For small levels of capital, the figures show that the saving rate and portfolio share 
approach those of those who never join the bank. This illustrates proposition 3. 

The simulated wealth evolution over 30 periods is shown in a three dimensional graph,42 
figure 4. This is not a particular realized sample path but rather is the expected evolution, based 
on the analytically derived transition function (29), period by period, using a grid43 for possible 
capital values and the computed, numerical approximations to the nonparticipants’ optimal 
policies (d,, put, &) as a function of wealth kt. 

VI. GROWTH, INEQUALITY, AND FINANCIAL DEEPENING: SPURIOUS REGRESSIONS 

The advantage of any formal, structural model of growth is that the mechanism or 
“drivers” are made clear. Here for example, given initial inequality in the wealth distribution and 
the parameters of technology and preferences, the drivers are the realized draws of idiosyncratic 
and aggregate shocks. There are stationary aspects to the model: household savings and portfolio 
decisions at date t, and hence the likelihood of financial participation at date t + 1, are all 
determined by current wealth and current participation status. But aggregate growth, inequality, 
and overall financial deepening are not stationary time series even after taking logs and lags. They 
are all endogenous and all determined by these underlying shocks and decisions in complex and 
nonlinear ways.44 Note that these complex dynamics are not only found in our canonical model, 

42The shapes of simulated and true distributions do not seem to match well. From 1976 to 1996, 
the true distribution moved from left to right keeping a similar shape, while the simulated 
distribution has twin peaks. Also, the simulated distribution shows a much wider support than that 
of the true distribution. Nevertheless, the 1996 cumulative distribution of the model and that of 
the data are not dissimilar. See Jeong and Townsend (2001) for a further study. 

43We use a log SC aled grid. Compared with a level scale, it is finer and thus more accurately 
approximating the distribution for the low to medium wealth, but the opposite is true for the 
high-wealth households. 

441f the data came from a stochastic steady state, there are some ways to normalize nonstationary 
time series to be represented as stationary time series. In this paper, the macro data are by 
construction taken from transient states, not a steady state. From the equation (35) of evolution of 
aggregate capital, the macro variables are functions of underlying wealth distributions of 
participants M,(k) and nonparticipants &$(k). These distributions change forms over time to 
steady- state distributions. Before reaching the steady state, as shown in figure 4, they are 
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Table 2. Spurious Regression Results: Long-Run Effects 

Estimation 1985 as initial period 1980 as initial period 
Method (1) (2) (3) (4 (5) (6) 

Constant 3.5110 
(11.8937) 

Financial Depth 4.7298 
(1.7914) 

Inequality 

Initial GDP 0.4324 
(1.0919) 

R2 0.9863 0.9942 0.9970 0.9860 0.9959 0.9975 

7.0600 12.7343 
(4.7252) (11.7274) 

-36.0538 3.7519 
(-31.0114) (0.9869) 

-5.2447 -8.8110 
(-1.8188) (-4.2517) 

0.4284 4.2420 
(1.1932) (15.3375) 

3.6189 8.3826 11.1520 
(10.8625) (3.9869) (6.5943) 

-5.8565 -1.9792 
(-1.4235) (-0.6003) 

0.5488 1.8229 4.4722 
(1.0689) (3.3601) (10.0040) 

-55.9250 
(-26.0722) 

Notes: The dependent variable is 20-year average annual GDP growth, the same as per capita growth. 
Robust f-statistics are in parentheses. 

but also in many other theoretical models that depict endogenous financial deepening, inequality, 
and growth. 

We ask here whether our canonical model can generate data consistent with the findings in 
the empirical literature. We fix the benchmark economy, populate it with 1002 households 
respecting the initial 1976 Thai wealth distribution, and then draw idiosyncratic shocks in the 
population and aggregate temporal shocks for 30 years. We do this experiment 1000 times, with 
different shocks, generating in effect panel data for 1000 (artificial) countries. We then revisit 
these countries to examine their status in later years.45 

transient, never coming back to have the same shape, even after any macro level normalization is 
taken, because of nonlinear savings and portfolio functions of individuals. Therefore, the 
stationary assumption that error terms of simple regressions are drawn from the same distribution 
over time or over countries is not valid here. Moreover, the ergodic assumption that error terms of 
simple regressions over time or over countries can reveal the underlying error distributions with 
large sample is not valid here either. 

45Here, we use the Gini coefficient as a measure of inequality to be consistent with the empirical 
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Table 3. Spurious Regression Results: Medium-Term Effects 

Estimation 1976-80 as initial period 
Method (1) (2) (3) 

1981-85 as initial period 
(4 (5) (6) 

Financial Depth 0.0599 0.6710 2.7300 1.9684 
(0.0230) (0.2501) (0.7645) (0.5412) 

Inequality 4.9854 5.4020 -11.2361 -10.3229 
(0.8192) (0.8610) (-1.2557) (-1.1328) 

GDP -0.2008 -0.7181 -0.8326 -0.0342 1.4357 1.1718 
(-0.4596) (-0.9936) (-0.9728) (-0.0557) (1.2823) (0.9574) 

R2 0.9601 0.9602 0.9602 0.9530 0.9530 0.9531 

Notes: The dependent variable is 5-year average annual GDP growth, same as per capita growth. The 
independent variables are lagged variables. Robust t-statistics are in parentheses. 

King and Levine (1993) report that there is a robust positive relationship between “initial” 
1960 financial depth and subsequent growth, averaged over 1960 to 1989. They conclude that 
financial services stimulated growth. Here we regress 20 year average growth rates on “initial” 
1980, or 1985, level of financial depth, controlling for the initial log level of GDP (as created by 5 
or 10 years of early model history). 46 Likewise Forbes (2000) replicates a typical finding in the 
empirical literature: a robust negative relationship between “initial” inequality in 1965 and 
average growth from 1965 to 1990. Here we regress 20 year average growth rates on initial 1980, 
or 1985, levels of inequality. Finally, we include both inequality and financial deepening on the 
right hand side. In sum, with error term V, for the m-th simulation or country, we run various 
versions of cross-country regressions: 

Growth, = QIO + qFinancialDepth, + a2Gini, + a3Log(InitialGDP,) + v,. (36) 

Table 2 reports on these long-run, 20 year growth regressions. As shown in the first 
column, the higher is the “initial” level of financial deepening, the higher is the subsequent 20 
year average growth rate, though the significance level is marginal. The positive sign is of course 
consistent with King and Levine (1993). Also, column (2) reports that the lower is the “initial” 

literature. 

46The GDP level is normalized to one at 1976 in the regressions. 
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level of inequality, the higher is the subsequent 20 year average growth rate. The significance 
level is marginal but the sign is consistent with Forbes (2000). However, when we include both 
financial depth and inequality as right-hand side variables, in column (3), the negative sign on 
inequality is reinforced while the sign on financial depth is reversed-both are now quite 
significant.47 

We repeat these regressions with 1980 as the initial year. The results on both financial 
depth and inequality are weakened, except for the financial depth in column (6). Note that we did 
not take 1976 as an “initial” period, because all 1000 simulations share the same wealth 
distribution in 1976. In other words, the true initial condition is the same for all the 1000 
simulated economies, meaning there should not exist any meaningful relationship between initial 
financial depth or inequality and subsequent growth. The substantial changes of sign, size, and 
significance of coefficients are consistent with underlying transitional growth model, that is, there 
is no stable relationship among these variables. 

This instability can be observed more clearly when we replicate medium-term regressions 
reported in Forbes (2000). She reports robust positive relationship between lagged inequality and 
five year average growth rate over 1965 to 1995, contrary to her long-run regressions. We 
construct medium-term, five year average variables4* and conduct panel estimation of the effect of 
lagged financial deepening and inequality on the GDP growth rate, controlling for country fixed 
effects, time dummies, and the lagged GDP levels in logarithms. In sum, we run the following 
regression on the panel, though abusing the notation above, 

Growth,,t = am + alFinancialDepth,,t-l + wtG:ir&,+l + a3Log(GDPm,t--1) + at + II,,~, 
(37) 

where o, is the fixed effect and ot is the time dummy.49 

We also confirm in table 3 that the regression results of medium-term panel regressions are 
quite different from long-run regressions. While the sign on inequality is now positive in some 
instances, consistent with the results of Forbes (2000), inequality is never significant. Indeed, 
none of the regressors are significant5’ 

47To the best of our knowledge, there is no empirical study that includes these two variables at the 
same time. Also, the similarity of countries in our simulation probably leads the coefficient 
somewhat unstable. It is more likely so for more similar countries, which we can show as 
regression results using 1980 as the “initial” periods. 

48Variables are five-year average of 1976-80,1981-85,1986-90,1991-95, 1996-00, and 
2001-05. 

49Note that these regressions (36) and (37) have other technical problems even if stable 
relationships are assumed (see Forbes (2000)). However, Forbes (2000) reports quite robust 
results from these regressions similar to the results from better estimation techniques. For us, 
since, given our model, even the best estimation technique does not bring meaningful results, we 
run only these simple regressions. 

“Here, also, we are not aware of any medium-term panel regression studies on financial depth and 
growth. 
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VII. GROWTH, INEQUALITY, AND FINANCIAL DEEPENING: EXAMINING THE 
MODEL’S PREDICTIONS 

A. Average Prediction 

We examine the model based on its average prediction. The solid lines of Figure 5 show 
the numerically constructed expectation of the growth rate and the participation rate, using 
equation (35) and the critical value of capital k*. They are almost identical to the average of the 
Monte Carlo simulations51 shown as the dot-dash lines. We can see that both expected growth and 
participation increase over time. The predicted growth rate is however low relative to the Thai 
data (the dashed line), and participation goes through the middle of the Thai data, while missing 
the S-upturn that began around 1986. 

A Theil index of inequality is constructed and displayed as the solid line in the bottom part 
of Figure 5. It shows a more or less steady increase over time, and while centered around the Thai 
data in early years, is misses the downturn in Thai inequality around 1994.52 It is higher than the 
Monte Carlo average (the dot-dash line), because it is an analytic upper bound to inequality by 
keeping track of all possible realizations of the aggregate and idiosyncratic shocks under their 
specified distributions and the derived saving and portfolio policy functions.53 The evolving 
distribution of wealth has a wider support than the Thai data, as might be predicted given its 
construction. More revealing perhaps of the model’s mechanics, it has twin peaks, as those who 
gain entry separate themselves from the rest, leaving a dent in the wealth distribution. 

With alternative, larger variance aggregate shocks, 0 = [1.022,1.172], the figures are 
almost the same (see figure 6). But simple averages over time of the three variables show higher 
levels as reported in Table 4. In other words, the model’s average prediction of the growth rate 
becomes closer to the actual Thai data, but the model’s average prediction for financial deepening 
and inequality are further away. This trade-off among three variables seems consistent among 
many of our experiments. Thus, there is something in the structure of the actual Thai economy 
which is not present in structure of the model. 

B. Robustness Experiments 

We check if the model’s average predictions are robust to other variations around the 
chosen benchmark parameters. We also see in the way the mapping from the parameters of the 
model to policy functions and dynamic paths, and so understand better the capabilities and 
limitations of the model. Figure 7 and 8 show two of these experiments, with policy functions on 

51Details are discussed below. 

52The model does not make a sharp distinction between wealth and income. We compare to Thai 
income inequality. 

53A P art of this difference also stems from setting of the grid. It is log scaled only for the analytic 
expected values. 
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Table 4. Simple Averages of Macro Variables 

Growth Fin.Dep. Theil 

(percentage point) 

Actual Thai Data 5.97 15.43 8.27 

Benchmark Simulation 3.87 15.48 8.23 

Alternative Simulation 3.98 15.75 8.39 

the left hand side (benchmark are dotted lines) and analytic, expected paths on the right hand side 
(actual Thai economy are dashed lines). We also report on others experiments, beyond these in 
the figures. 

Raising the risk aversion parameter to 1.5 lowers the saving rate initially, (though savings 
jumps up with higher wealth), lowers the fraction invested in risky assets, and lowers k* (the 
critical level of wealth to join the financial system). The dynamic paths of the model show 
slightly less growth and less participation but put the rising trend of inequality squarely though 
the Thai data path. Lowering the variance of the idiosyncratic shock to [-0.3,0.3] lowers the 
saving rate, causes the portfolio allocation to go to the obvious risky extreme, and raises k’ 
(figure 7). This accelerates participation well above observed Thai rates. A well-fit dynamic path 
comes from assuming a high mean return on the safe asset, to 8.49, so the share of the risky asset 
in the portfolio goes very low (figure 8). This raises k” considerably, and of even greater interest, 
captures the initially slow and subsequent fast rise in participation in the Thai data. Higher 
marginal transactions costs at 2 percent lower both savings and growth. 

C. Best-Fit Simulation 

Our goal here is to investigate the simulation that best fits the actual Thai path. Since the 
actual path of the Thai economy is imagined here to be just one realization of many possible 
histories of the model economy, the actual Thai path should differ from the above expected path. 
Further, the null hypothesis is that the Thai economy is a transition economy, so we cannot use 
steady state calculations as in the real business literature. Instead, we use the entire history as one 
sample, construct a metric that measures closeness of simulated variables to the actual Thai data, 
and pick the best-fit simulation based on this metric. 

We choose household sample size N = 1002, which is sufficiently large so that the 
population average of idiosyncratic shocks is virtually zero and so that we are able to replicate the 
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initial 1976 distribution of wealth as observed in the SES data. 54 We simulate from 1976 to 1996 
(T = 21) by drawing idiosyncratic shocks and aggregate (common) shocks. Specifically, we let 
em = b9ml,~m2,-. ,0,,) denote a time path of the aggregate shock as a realized sequence of 
draws from the specified distribution F(B). For every sequence of aggregate shocks, we simulate 
the economy S = 100 times for the N = 1002 people, thus obtaining various possible realized 
sample distributions of idiosyncratic shocks drawn from the underlying distribution G(E), i.i.d. 
over the (finite) population and over time. We do this for M = 40 aggregate shocks.55 

Let x ~~ denote a column vector containing p time and type variables in a particular 
simulation, one out of one hundred simulations, under the fixed m-th aggregate shocks 0, path 
with N people. Let a, denote the expected value of macro variable XNm with respect to 
idiosyncratic shocks given specific realization of aggregate shocks. Let b, denote the cross 
sectional average of individual variance (the second moment around the mean conditional on the 
initial wealth level and specific realization of aggregate shocks).56 Because we can write the GDP 
growth rate, the financial sector participation rate, and the Theil index as weighted averages of 
corresponding individual variables with normalization, we can apply the strong law of large 
numbers and the central limit theorem to the realizations XN, relative to the mean a, as the 
number N of the population with i.i.d. draws of E goes to infinity: 

Proposition 5. Under the m-th aggregate shock path, the macro variables asymptotically follow 

54The initial wealth density is obtained by calculating the proportion of people in the SES having 
wealth in the ranges of [0, lOOOO), [lOOOO, 20000), . . , [530000,540000] baht. We regard the 
median value within a cell as the initial wealth level of people on the range (i.e., 5,000 baht 
wealth is assigned for people reported to have wealth in the range of [0, 10000)). We cut outliers 
higher than people having more than 540,000 baht wealth (about 6 percent of total SES sample 
size). This is because the density for more than 540,000 is scattered over a large range and each 
mass point is very tiny, less than 0.05 percent of SES sample size. 

55The size of population N needs to be large to minimize numerical error problems associated 
with representing the wealth distribution as well to average out the idiosyncratic shocks. Larger 
sizes of simulation numbers S and M are always better, but the overall data size, 
T x N x S x M, can be huge. It is difficult to conduct a larger number of simulations. Even if 
our model were true and data were correctly measured, numerical simulation has three 
limitations. First, we cannot avoid approximation error of the wealth distribution, which we 
approximate by a discretized grid. Second, there exists an numerical error due to finite 
approximation of the central limit theorem regarding the idiosyncratic shock. Third, the same 
numerical error applies to the central limit theorem regarding the aggregate shock. The first and 
second problems are a function of number of people we choose in a simulation and the finiteness 
of the grid. The third one is a matter of number of simulations we conduct. 

56See the precise definition in the proof for proposition 5 below. 
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a normal distribution,57 

This suggests that a squared error metric, as the square of variance-weighted normally 
distributed random variables, will have a x2 distribution. We return to that below. 

For now, however, we note that squared deviations, not from the model average but from 
the Thai path, also have a nice distribution. We can thus construct a natural squared-error metric. 
Specifically, let 

t-NmO = Nz’,,, b;’ ?Nmo , (39) 
where 2Nrn0 is the deviation of a particular simulation under the m-th aggregate shocks not from 
the mean but from the actual Thai data zo. We then have 

Proposition 6. The asymptotic distribution of the closeness metric is the following noncentral x2: 

d 
tNm0 z x2b &&%no), (40) 

where GrnO = a, - x0, the difference between the O,-conditional mean and the actual Thai data. 

The goodness-of-fit of a particular model path can be calculated as the inverse function of 
the cumulative distribution of this noncentral x2 distribution at the value [NmO. Thus high x2 
values are associated with unlikely outliers. With this criterion, we pick the best-fit simulation out 
of 100 for each realization m, and then pick the overall best over m among the M = 40 possible 
aggregate shock paths.58 

Figures 10 and 11 show the best-fit simulation from among the 4000 possibilities for the 
benchmark economy and the alternative with higher variance of the aggregate shock. The growth 
rate is still low relative to the Thai path, but the model path now has considerable variability, 
while missing the big upturn in 1986. The best-fit with higher aggregate variability produces as 
anticipated a yet more erratic growth path, and a higher average path as well. The best-fit 
participation rate mirrors its analytic and average counterparts, here perhaps with slow-moving 
small deviations from trend. The Theil measure of inequality under the benchmark parameter 

57This result is not trivial because XNm averages out not only idiosyncratic shocks but also cross 
sectional variations in the wealth distribution. Similar results to the proposition 5 should be 
applicable to any aggregate variables in an incomplete market environment, where individual 
shocks are not perfectly insured and most macro variables can be written as a weighted averages 
of individual variables. However, we cannot use this result for some aggregate variables, such as 
the Gini coefficient, because it is not decomposable into individual components. As an inequality 
measure, we pick the Theil index, which is known to be decomposable. 

58We use the three macro variables (growth, participation, and inequality), but drop the first two 
time periods, as they move little from the common starting point of the simulations (i.e., time runs 
from 1978 to 1996). In sum, we focus p = 57 variables consists of 19 annual data (1978 to 1996) 
of the three macro variables. 
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values is much more erratic and even produces occasional decreases in inequality along its overall 
upward trend. Under the alterative higher-variance path, inequality is higher and diverges 
dramatically away from the observed Thai levels. 

The best-fit simulation is not an outlier among all possible model paths at the specified 
parameter values. To establish this, we return to equation (38). It seems natural to construct a 
metric for deviations of a particular model path from the mean under a particular shock sequence 
8,. That is, let 2N, is the deviation of XNm from the mean a, and define the closeness metric 
II, Nrn as 

&,Tm = N5’,,b,&‘ZN,. (41) 

This asymptotically follows a x”(p) distribution with p = 57 degree of freedom (i.e., the three 
macro variables over 19 periods), 

?Q Nm & x”(P). (42) 

Note that the right hand side of (42) does not depend on the specific aggregate shock Bm, 
as seems natural since we are fixing the aggregate shock and taking the limit only as the number 
N of households gets large. One does need the conditional mean and variance, a, and b,, to 
construct the left hand side of (42), however. 

After we carefully construct these moments,59 we obtain $Nm and plot it in Figure 9 using 
the dashed line, while we also plot the true x2(57) distribution using the solid line. These two 
lines illustrate the overall accuracy of our simulations. In the tails, where the error would be at a 
maximum, at the theoretical 5 percent level, the simulated distribution has 4.8 percent of its mass, 
and similarly at the 95 percent, the simulated distribution has 95.1 percent of its mass. 

To return to the issue at hand, the best-fit simulation lies within an 83.2 percent confidence 
region, that is, well within a standard 95 percent confidence region. It is thus not an outlier among 
possible model paths. Under the alternative higher 0 variance experiment, the best-fit path is 
within a 78.3 percent confidence region. Both these best-fit paths capture important aspects of the 
Thai economy as described above. 

D. Confidence Region 

Although we have shown that the average simulation is capable of producing a 
smoothed-out version of Thai data and the best-fit simulations trace the actual Thai paths quite 
well, we have yet to test whether the actual Thai economy path itself could be a likely realization 
of the model at given parameter values. The problem in doing this is that we do not know the 
aggregate shock path which underlies the realized Thai data, on the null hypothesis that the model 
is true. Furthermore, we can not simply fix 0 and run 100 simulations, and then repeat for each of 
the 40 aggregate shocks, since the idiosyncratic and aggregate shock variables to do not 
independently affect the three variables in question. Thus, to pick up the joint variation and 

59See the computational issues at the end of proof of proposition 5. 
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co-determination, we construct 1000 simulated economies with sets of unconditional and 
randomly chosen aggregate and idiosyncratic shocks. 

We calculate the GNrn statistic defined in equation (41) but with unconditional simulated 
moments instead of aggregate-shock-conditional moments for each simulation6’ This 1000 
simulated test statistic constitutes the dot-dash line in figure 9. It is close to a x2 distribution, but 
it has even less mass at small values and more mass at high values, namely at the 5 percent and 95 
percent theoretical x2 cutoffs, it has 3.1 percent and 96 percent mass, respectively. The difference 
stems from not only numerical error but more likely from the theoretical difference from a x2, 
reflecting uncertain noncentrality (difference between aggregate shock conditional mean a, and 
unconditional mean a). We do not attempt to reduce the numerical error by adding more 
simulations, but rather use this empirical distribution directly. 

The GNO statistics using unconditional moments for the actual Thai data61 show much 
larger values. The simulated statistics are distributed around the mean of 57 with values at the 5 
percent to 95 percent level ranging from 43 to 74. In contrast, the Thai economy path is 
associated with a value of 1625. In short, the null hypothesis that the Thai economy path could 
have been generated by the model at the calibrated parameter values is overwhelmingly rejected. 
So also is the alternative, high 0 variance economy. Evidently the model has content; that is, the 
model is putting restrictions on data, and restrictions can be soundly rejected. Though not 
supportive of the current structural model as specified, this is not bad news in so far as the overall 
research agenda is concerned.62 

To make headway on the sources of rejection under the current specification, we examine 
the goodness-of-fit statistics of each variable and combinations of variables. Numbers in the 
column “Growth” in table 5 show the calculated 4 NO statistic using the actual GDP growth rates 
and simulation averages of financial deepening and inequality. Since the differences from average 
simulation are nonzero only for the growth rates, the number is the mean squared error of growth 
rates weighted by its simulated autocovariance. 63 Other columns are similarly calculated. 

60Formally, this statistic is defined as 

where 2h,, is deviation of macro variables x ~~ in m-th simulation (here m = 1, . . , 1000) 
from the unconditional mean a. 

61Formally, it is defined as ^ 
$‘NO = Ni?;,b-‘lcoa, (44) 

where ?& is deviation of actual macro variables x0 from unconditional mean a. 

620ne source of rejection could come from the fact that we did not estimate the underlying 
parameters. Currently we are exploring whether the techniques of this paper would allow full 
estimation. However, there are also constraints on computation which need to be overcome. 

63Theoretically this statistics should closely, but not exactly, follow x2( 19) distribution as 
population N gets large. 
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Table 5. Goodness-of-Fit Decomposition 

Mean Simulation Growth Growth Fin.Dep. 
Replaced by Actual Growth Fin.Dep. Theil + + + ALL 

Fin.Dep. Theil Theil 

Benchmark 339.7 188.3 836.1 509.7 1493.2 986.3 1625.0 

Alternative 215.6 183.0 764.8 385.1 1253.9 929.0 1404.5 

Notes: Mean of simulated unconditional x2-like statistics is 57, consistent with mean of true x2(57) distri- 
bution. See figure 9. 

First three columns in table 5 show sound rejections for growth, financial deepening, and 
Theil, each taken separately, one at a time. Of these, the model fits financial deepening the best, 
and inequality the worst. The alternative economy does better on all three dimensions. As was 
evident from table 4, the overall time-averaged mean values of the benchmark and alternative 
(average over shocks and best-fit) paths are not much different from the corresponding Thai 
averages, especially so for financial deepening and many of the Theil indexes.Therefore, these 
rejections are driven by failure of the model to pick up the auto-covariance structure of the data. 
Note that the structural model is not a model of business cycle fluctuations. 

We can also look at the goodness-of-fit of two variables at a time, and more to the point, 
see if the model’s prediction concerning covariance across variables is helping or hurting. If the 
sum of any two columns for each variable one at a time on the left-hand side of Table 5 is greater 
than the corresponding sum-column on the right hand side of the Table 5, then covariance across 
variables is helping. We conclude that cross variable covariance between growth and financial 
deepening is helping to reduce distances from the mean, and similarly for financial deepening and 
Theil, but the opposite is true for growth and inequality. With the three variables together, the 
bottom line is unclear: across-variable covariance is hurting in the benchmark case, but helping in 
the alternative case. 

The failure of the model stems in part from the auto-covariance structure that the model 
generates, in line with the problem we saw in the best-fit simulations (high oscillations in growth 
rates and in inequality). This shortcoming partly reflects our criterion that matches first moments 
or paths of the variables, not second moments, and partly our time independent assumptions on 
the idiosyncratic and aggregate shocks, contrary to the auto-correlated shocks of the real business 
cycle literature. The model, as a theory of growth, explains the growth facts well (e.g., the 
average trend of the actual Thai data) but less so the cyclical components. 
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VIII. FURTHER MICRO EVIDENCE 

A. Inequality Decompositions 

Jeong (2000) documents that, in the SES, participation in the financial sector, along with 
occupation and education, are key driving variables, explaining 39 percent of the change in levels 
of income (the residual is income growth within the categories themselves) and, using the mean 
log deviation, 72 percent of the change in inequality (the residual is change in inequality within 
categories). Further, financial participation alone can account for 20 percent of change in income 
and 41 percent of change in inequality, 1976-96. Put another way, education and occupation 
shifts account for 45 percent and 30 percent of the change in income in the 1976-86 and 1994-96 
periods, respectively, higher than other categories, but financial access accounts for 27 percent in 
the 1986-92 periods, higher than any other category in that period. Recall also that financial 
deepening was particularly evident in that period. Likewise, financial sector participation in the 
1986-92 period can account for 76 percent of inequality change: 35 percent by the composition 
change to the higher-income access group, 28 percent by the divergence of the income gap across 
access, no-access groups, and 13 percent by the shift to the higher inequality group. The financial 
access numbers are nontrivial in other periods, as well. 

As noted, the benchmark economy tracks the overall trend of inequality and financial 
participation reasonably well, and not terribly bad with respect to growth. We can further 
decompose this growth and inequality change. The composition effect on growth of population 
shifts from the low income nonparticipation sector to the higher income participation sector 
accounts for 30 percent of income change in Thailand and 60 percent in the best-fit benchmark 
model simulation for 1976-96 periods. This is because the model overpredicts the income gap 
across these two groups, approximately 3-l in the data versus 5-l in the model. Similarly, the 
composition effect of population shifts on inequality accounts for 35 percent of the inequality 
change in Thailand and 69 percent in the best-fit benchmark simulation. Evidently the model at 
benchmark parameter values over emphasizes the role of financial participation, as might seem 
natural given that this is the focus of the model itself. This is not a pre-ordained feature of the 
model, however. At an alternative best-fit, higher-aggregate-shock/higher mean simulation, for 
example, we do better on the compositional effect, down to 54 percent of growth, somewhat 
nearer to the data, and only 12 percent of inequality change, less than in the data. Unfortunately, 
this comes at the expense of an increased (and unobserved) divergence of income across the two 
sectors, while also missing the absolute magnitudes of overall trends. It thus seems the model at 
various parameter values can deliver a rich range of possible inequality phenomena, but there are 
nontrivial tradeoffs, depending on which one we try to fit. This is reminiscent of early works and 
debates on real business cycle models. 

B. Heterogeneity in Participation 

The model seemingly assumes uniform entry costs 4, and makes predictions for all 
households together, but this too can be examined further. Specifically, the model with its linear 
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returns (and no endogenous prices) allows us to calibrate and simulate for various of the key 
education and residence groups, one at a time. 

For example, we can distinguish SES households by the completed level of education of 
the head (elementary and advanced secondary). We continue to fix technology and preference 
parameters at their benchmark values, including the model version of 4, hence lo*. But for each 
group separately we center the initial (SES estimated) wealth distribution so that the initial 
participation rates of the Thai data match the predictions of the model (on the false assumption 
that everyone above the threshold is participating). Those initial participation rates in 1976 are 10 
and 34 percent for the two chosen education groups and 8 and 25 percent for rural and urban 
households, respectively. We then simulate economies from 1976 to 1996 one group at a time. 

Two related findings emerge from this analysis. First, the model at benchmark values 
tends to over predict the subsequent participation rates of the advanced secondary and urban 
groups. That is, the model predicts that access would have been higher for them over time relative 
to what we observe in the data (at the benchmark parameters, which, again, match reasonably 
well the overall rates.) Ironically, one begins to wonder if there are barriers to participation, not 
for the poorly educated, village residents but rather for their highly educated urban counterparts. 
Of course we could introduce heterogeneity in preference and technology parameters across these 
groups, but the direction of needed change might seem surprising a priori, that is, higher risk 
aversion for those educated/urban groups, higher variance of idiosyncratic shocks, or lower mean 
returns. 

Second, and related, we can fix the exchange rate between the model units and Thai baht 
using one group, and thus compare in common currency units the transactions costs CJ across the 
various groups. Even though the educated have higher access, for example, they have an even 
higher, right-shifted distribution of wealth, so the threshold wealth lc* for them is relatively high, 
making their transaction costs 4 relatively high also. Thus we find that participation costs are 
higher (not lower) for the educated and urban groups. Again, to overturn this, we would need to 
raise (not lower) risk aversion, raise the variance of the idiosyncratic shocks, or lower the mean 
return, for example. 

IX. CONCLUSION 

We follow the research agenda laid out in Lucas’s Presidential Address to the American 
Economic Association in 2003 (Lucas (2003)): “For us, today, value theory refers to models of 
dynamic economies subject to unpredictable shocks, populated by agents who are good at 
processing information and making choices over time. . . [This involves] . . . formulating 
explicit models, computing solutions, comparing their behavior quantitatively to observed time 
series and other data sets. As a result, we are able to form a much sharper quantitative view . . . .” 

In this paper, we take this agenda to the study of economies in transition, a departure from 
typical calibration exercises on steady-state dynamics. That is, we have proposed a quantitative 
research methodology consistent with the widely held view that financial deepening and changing 
inequality, along with economic development, are transitional phenomena. We also show that, 
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consistent with this view, simple regression studies would not be able to capture the true linkages 
among growth, financial deepening, and inequality. 

The model we use is a relatively simple prototype which emphasizes a fixed cost of 
financial participation, but this generates complicated nonlinear nonstationary dynamics. We 
overcome apparent nonconvexities. In particular, we point out the possible usage of a risky asset 
or occupation as a natural lottery which can convexify the frontier of lifetime utility (the value 
function). We then establish the monotonicity of the participation decision with wealth and 
single-valuedness of savings and portfolio choices. These analytical results enable us to study the 
model further with numerical methods. 

We apply the model to Thai data, calibrate, and make predictions. We look at the analytic 
and average prediction of the model. It is broadly consistent with the actual pattern of growth 
occurring with increasing inequality and financial deepening. However, while the expected 
participation rate and the expected inequality measure generated by the model almost trace out a 
smoothed version of the actual Thai data, the simulated expected GDP growth rate is lower than 
the actual Thai path. We vary the key parameters and conduct robustness experiments. 

Because the actual path of the Thai economy is imagined here to be just one realization of 
many possible histories of the model economy, we construct a x2 metric of closeness and examine 
the best-fit simulation. The best-fit simulation shows a reasonable match with the actual Thai data 
and is not an outlier among all the simulations. Therefore, in this sense, the model does replicate 
the actual data well. However, it misses some of sharp upturns of the GDP growth rate and of 
financial deepening in the data. Inequality in the model misses the eventual downturn of the data 
and has more erratic movement. 

We also construct from a set of Monte Carlo simulations a confidence region and formally 
test the model. The model imposes sharp restrictions on the data. Indeed, at the benchmark 
parameter values, the model is rejected. We turn our attention to the sources of the rejection. We 
decompose the relative successes and failures into within-variable and across-variable 
components. The model fits Thai financial participation the best and Thai inequality the worst. 
Likewise, the model does better with the observed cross-variable relations between growth and 
financial deepening, and between inequality and financial deepening, but does worse with the 
observed relationship between growth and inequality. 

With the model in hand, we return to a more detailed examination of Thai micro data. The 
model rightly focuses attention on the composition effect, the population shift from relative 
autarky to financial participation, but it is missing other components of growth and inequality 
decompositions. We also introduce heterogeneity and examine financial participation by 
education and urban/rural status. 
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Figure 2. Value Functions 
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Figure 4. Wealth Evolution 
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Figure 5. Benchmark Average Paths 

Grotih Rate 

I’0 

015 

5 IO 15 20 25 30 0 5 IO 15 20 25 Yo 
lheil Index Theil Index 

I I I Ob i I I I I 
1 

O/F --::--;::::, 
,,’ _ , 

Figure 6. Alternative Average Paths 

Grolh R& 
151 I I 1 



-4l- 

Figure 7. Lower Variance of Idiosyncratic Shock 
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Figure 8. Higher Safe Return 
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Figure 9. Accuracy of Simulation 
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Figure 10. Benchmark best-fit Figure 11. Alternative best-fit 
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APPENDIX I. PROOFS 

A. Proof of Proposition 2 (i) 

Monotonicity is easy to show (see the working paper, Townsend and Ueda (2001)). 

The proof for concavity is shown by contradiction, supposing Z(k) is not concave, that is, 
suppose Z(lc) is locally convex in the neighborhood of k. Then we can take some policy (11, 4) at 
Ic with the associated return e(v) and the associated consumption Z: = (1 - ,G) i that satisfies the 
following conditions64 (see figure 1): 

E[E(q)]$ 2 iE> 

average of capital next period is larger than the capital this period, and 

(Al) 

s qq~&~)~Jf($ 2 qqq7l)]$), G42) 

Z(.) is locally convex at E[e(q)]$ in the neighborhood of i. Condition (A2) implies that the 
nonconcave part of Z(lc) can approach the convex hull with appropriate choice of policy (p, 4). 
Essentially, integration is the same as taking an average with the weight (the probability measure 
of shocks q), and the choice of the range of average is determined by portfolio choice 4. 

Consider now the value for the nonparticipant at the capital level &, 

W(i) = rn~xu((l - p)i) + p 
.I 

Z(e(7j)pLlc)dH(q). 

Since the policy (,G, 4) above is possibly nonoptimal, 

643) 

(A41 

By the condition (A2) and c = (1 - b)&, 

Here, we focus on the case cr # 1, but the following logic is applicable for the 0 = 1 (log) 
case.65 By the closed solution of V(k) as in equation (20), 

‘u.(C) = E = (1 - p*y (1 ,“~-“F’-” = (1 - p*)qqq 646) 

64Assumption 4 guarantees the existence of a ,G satisfying condition (Al), and the random nature 
of shock q guarantees the existence of 4 satisfying the condition (A2). 

65We can take 0 + 1. 
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We can rewrite this as 

APPENDIX I 

= (l- p)v ((1 - /!+(l- il‘!+ 

However, since V(k) > Z(k) by proposition 1, 

u(C) > (I- p)z ((1 -/z&l - i”*)‘r”i-) 

647) 

(A81 

649) 

By substituting this into the inequality (A5), we get 

W(lc) > (1 - pp ((1 - /3)&(1 - ‘-l’)%) + PZ(E[+7)lP@dH(rl). (Al 1) 

If we can show the right hand side ofthis inequality (Al 1) is larger than or equal to Z(i), we 
complete the proof, i.e., W(k) > Z(iF), contradicting the definition of Z(k) in equation (15). 

The point in the domain of the second Z term in the right hand side of (Al 1) is E[e(q)]$, 
and is larger than or equal to Ic by condition (Al) above. If we show the point in the domain of the 
first Z term in the right hand side of (Al l), 

(1 - &ql - p*p%c, (A121 

is larger than or equal to &, then the right hand side of (Al 1) is larger than or equal to Z(i). That 
is, the right hand side of (Al 1) would be just a linear combination of points which are larger than 
or equal to Z(i). 

Note that the point in the first Z term, (A12), can be rewritten with C = (1 - b) i as 

Now we need to show 

Rewrite this as 

(A141 

(1 - P*). (A151 

Note that we can always take ,G to be small as long as it satisfies the conditions (Al) and 
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(A2). By condition (Al), 
1 

p > E[qq)]. 6416) 

Hence we can take l/E[t?(q)] as ,G, and l/E[e(n)] is the largest when 4 = 0. The largest value of 
the lower bound that ji take could then be equal to l/S, that is, fi can be chosen at least from 
[l/b, 1). Therefore, if t_he right hand side of (A15) is greater than or equal to l/6, then we can 
always take some (,G, 4) that satisfies (Al) and (A15). In this case, it is easy to show that the 
condition (A2) is also satisfied.@j 

Now we prove the right hand side of (A15) is greater than or equal to l/b: 

1-p* i% 
+- ~ ( > 1-P 

(1 - PL*). 

By rearranging terms, we get 

or 

1 1-p* 2 
1-a’ 1-p 

( > 
(1 - CL*)> 

( > 1-i 
1-U 

2 (I- P)(l - $-“, 

6417) 

6418) 

6419) 

then 

By taking the logarithm, 

O-l 

(1 -/L”*)” 2 (1-P) . 6420) 

c7log(l-~*)>log(l-p)+(0-1)log (A211 

By dividing both sides by 0, we get condition (25) in the assumption 5. Therefore W(i) > Z(i) 
under assumption 5. But, as we mentioned above, W( Ic) > Z( Ic) contradicts the definition of 
Z(lc) in (15), and thus Z(k) must be globally concave. 

B. Proof of Proposition 2 (ii) 

Proofi Continuity of Z(k) in lR++ is immediate by concavity. Concavity also implies 
differentiability of Z(k). The proof is essentially the same as those for theorems 4.10 and 4.11 of 
Stokey and others (1989), pages 84-85. 0 

@When 4 = 0, E[e(q)] = 6, an d we can take fi = l/b, making the next period capital exactly the 
same as today’s one &L Now, the condition (A2) requires Z(.) to be locally convex exactly at i, 
which is satisfied by the assumption. 
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C. Proof of Proposition 2 (iii) 

Proo$ We would like to apply Berge’s maximum theorem67 and its corollary.68 We need to show 
the range of objective function is lR (excluding *co), and show strict concavity of the objective 
function. 

First, we would like to show that the range of U(C) + /3 s Z(k) is R (excluding &co). By 
the Inada condition, we can restrict the range of instantaneous utility functions in Iw. without 
affecting the optimal choice of savings. the range of this value function is R by assumptions 3 and 
4. Hence the range of U(C) + p s Z(lc) is also IR. 

Second, we would like to show that U(C) + /3 s Z(lc) is strictly concave in (p, 4). 
However, u is strictly concave, so we only need to show concavity of s Z(lc). Take a E (0, l), 
(~1, $1) and (~2, $2) both from [0, l] x [0, l] with sr < ~2. 

J %v4~(~lrl+ (1 - da) + (1 - 4wv~zrl+ (1 - $2P))Wrl). (A221 

Since Z(k) is concave by proposition 2, 

>a Jz(~~v~~~+ (1 - til)~))d~(rl) + (1 -a) /'z(pak:(427 + (I- q52)6))dH(q). (~23) 

Hence J” Z(k) is concave in (p, q5), and thus U(C) + p [ Z(k) is strictly concave. 

Therefore, the optimal policies (p(k), $(lc)) are single-valued and continuous functions on 
k. q 

D. Proof of Lemma 1 (i) 

Proo$ Optimal capital evolves as follows. 

k,*,, = p*7qQlc,*. (A241 

67Berge (1997) page 116 with a slight modification of notation: If $ is a continuous numerical 
function (i.e., has a range in R.) in Y and I is a continuous mapping of X into Y such that, for 
each z, I’(z) is nonempty, then the numerical function M defined by 
M(z) = max{$(v)l:9 E r(z)) is continuous in X and the mapping \I, defined by 
Q(4 = MY E J%~+(Y) = Mb-91 isaupp er semicontinuous mapping of X into Y. Also see 
Stokey and others (1986) page 62. 

68Berge (1997) page 117 with a slight modification of notation: If I is a continuous mapping of X 
into lR such that, for each 2, I’(z) is nonempty, there exists a continuous single-valued mapping 
$* such that, for each z, $*(z) E I’(z). 
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We can rewrite this equation as follows, using the error term “normalized” by mean return 

iwe) = @t) - E[@t)l. (A251 

Variable & has mean zero and is drawn from a time-invariant distribution because 6’ is. Using this, 
/c,*+~ becomes 

q+, = P.*@-(&)1(1 + &;. (AW 

By taking the logarithm, we get 

In /c,*,~ = Ink,* + lnp*E[r(Bt)] + ln(l+ it). (A271 

Recursive substitution backwards in time yields 

Ink;+, = In Ic; + k In p*E[7-(Bj)] + 2 ln(l + ij). WW 
j=l j=l 

Let gj = p*E[r(Bj)] and & G ln(1 + &), then from (A28), 

Ink,*,, = Ink;+tlng~+fJj. (A291 
j=l 

Divide (A29) by t, 
ln G+1 -= 

t (A301 
j=l 

The first term goes to zero as t becomes large, and the third term converges to zero, almost surely, 
because it is the sum of an i.i.d. shock with bounded variance and zero mean.69 Hence, q 
converges to In gk > 0 almost surely. Therefore, the wealth level of each individual reaches any 
wealth level K < 00 in the long run as t -+ 00, almost surely. 0 

E. Proof of Lemma 1 (ii) 

ProoJ: By changing the variables, almost the same argument of the proof of lemma 1 applies. 
Denote (p**) $**) as the optimal saving rate and portfolio share of those who never joins the bank, 
and define e**(ni) = $**nj + (1 - 4**)S. Take ii = e**(qi) - E[e(l7j)]. The analogue of equation 
(A28) in lemma 1 is 

lnk$JI = In kI* + 2 In p**E[(e(qT*))] + 2 In /L**[j. (A311 
j=l j=l 

From here, the argument is the same as in lemma 1. 0 

69See Stokey and others (1989) page 422. Note that & is approximately equal to ii. 
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F. Proof of Proposition 4 

ProoJ: Suppose not, then there existsomeone who never joins the bank. This implies that they 
never accumulate wealth exceeding Ic, where ,& is defined as iE = inf { Ic 1 V(k - q) > W,(k) } .70 
This contradicts lemma 1 (ii). 0 

G. Proof of Proposition 5 

This proof has five parts: approximating the initial wealth distribution, law of large 
numbers, central limit theorem, application to the three macro variables, and computation of 
moments. 

Wealth Variable 

Conditional on the aggregate shock vector 8, for the m-th simulation, each household’s 
income at each period varies with idiosyncratic shocks and its own previous wealth level, 
indirectly through savings and portfolio choice. Note, however, that the wealth level is growing 
and not ergodic even for each household level. Thus we represent each household’s wealth in the 
beginning of period t as &it = Ic(tf , Lucia ]19;), a function of t-period history of idiosyncratic 
shocks e,t = ( eil, ei2, . , Q) and the initial wealth lcio conditional on the history of aggregate 
shocks 0& = ( Qml , Bm2, . . . ,19,,). Since ci is a random variable which is independent and 
identically distributed (i.i.d.) over individuals from Gt(.), its Bore1 function ICmit itself is also an 
independently and identically distributed random variable for those who share the same initial 
wealth level, but it is an independently and not identically distributed random variable for the 
entire population. 71 In other words, the sources of variation in ICmit are i.i.d. idiosyncratic shocks 
and the cross sectional variation in the initial wealth. 

Approximation of Wealth Distribution 

From the SES data set, we obtain the initial cumulative distribution of wealth J&o(lc)72 by 
a step function with L steps. Specifically, it has L elements in its support, [k, , k,), 
!c,&?k~~ , [kL-i, kL), kL with equal width n = 10000 baht except the last one. Given the 
whole support for the initial distribution [&, ICI, the width is defined as LJ = (k - lc)/L. Note that 
k, = b = 0 bahts and k, = #6 = 540,000 baht (i.e., L = 54 categories). 

70Because from equations (20) and (22), we know that there exists i such that for k > i, 
V(k - q) 2 Wo(lc), and that, if their wealth exceed i, their optimal choice is to join the bank. 

71Each individual’s op timized savings and portfolio choice are not identical (varies with the wealth 
level) and affect the evolution of aggregate wealth distribution. Measurability of these optimized 
decisions requires some technical assumptions. See Townsend and Ueda (2001). 

72Strictly speaking, it is defined as the initial distribution for nonparticipants. As for participants 
from the initial period, conditional on the aggregate shock ok, their wealth ,&it follows a 
degenerate distribution, but the proof here still applies. 
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A probability mass of 
lj = MO(kj+l) - MO(kj) (A321 

is assigned for support [ki , $+i). Obviously, the approximated cumulative distribution of wealth 
is defined as, 

j=l 
for h = 1, . . ) L - 1, for all .z E [kh,kh+i) 

(A33) 

= 1, for 2 = Ic. 

In practice, we take i to be a little larger than the upperbound of the sampled wealth so that 
MO(z) can reach 1 before .z = ,?,. By doing so, we focus mainly on z E [&, k). 

Note that we use the following notation for the Riemann integral with respect to the 
approximate distribution AJo: 

J 
L 

dMo(k) = 5 lin. (A341 
rc j=l 

We pick N people to approximate this initial wealth distribution. Mass of 
nj - round(NZj) is assigned73 for support [pi, lcj+l). We then assign k+ = (ki + l~~+~)/2, the 
median of the support, as the initial capital for these nj people. We write the distribution 
approximated with N people as Q,“(k). Obviously, the probability mass is better approximated 
with larger N. For j-th support, 

(A351 

and for whole distribution in sup norm, 

d’l& /MO(k) - A?$+) 1 = 0. (A361 

Law of Large Numbers 

Now we look at support [ki, ki+l). As described above, nj people are assigned to share the 
same initial capital level but over time they experience i.i.d. idiosyncratic shocks cz. We can thus 
apply the strong law of large numbers. That is, for all t, 

where A(lcoj 10;) is the true mean of IC,it and a function of the initial capital level, conditional on 
the specific aggregate shock.74 

73This round(Nlj) takes nearest integer value of Nli. Naturally, c,“=, ni is not necessarily equal 
to N. In our simulation, we assign N = 1010 but it turns out Ci=, nj = 1002. 

74%(Et) denotes the Bore1 field of Et. 
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The convergence of the approximate weight of each element of the support, equation 
(A35), can be viewed as sure convergence of random variable nj/N that follow a degenerated 
(relative to Gt(.)) distribution. Since sure convergence is stronger than almost sure convergence, 
we can apply the Slutsky theorem for multiplication of the almost sure convergent sequences, 

Moreover, we can also apply it for sum of the almost sure convergent sequences, 

(A39) 

We define the true population mean of wealth level at t, conditional on aggregate shock 

which by construction (equation (A34) and (A37)) is equal to the right hand side of equation 
(A39). Also, the left hand side of equation (A39) can be expressed as a simple average of wealth 
variables over individual i from 1 to N, instead of averaging over individual i within nj people 
sharing the same initial wealth and then averaging again over these j = 1, . . , L types. We define 
the simple sum as 

N 

6441) 
i=l 

By substituting the left hand side of equation (A39) by SN~ and the right hand side by 
ok&, we obtain a law of large numbers including cross sectional variations, 

Central Limit Theorem 

(~42) 

We redefine the wealth variable as a deviation from the mean of the j-th support, 

By construction, the true mean over idiosyncratic shock history 8 is zero, 

J @et, k&9;)dGt(c) = 0. 6444) 
B(Et) 
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We also introduce true variance for individuals sharing the same initial wealth bj, 

This varies with the individual, depending on which support his initial wealth belongs to. 
Moreover, we introduce the sum of these variances, which is the true variance including cross 
sectional variation: 

We define sum of wealth in this deviation form, 

By applying the Lindeberg-Lyapounov theorem,75 we obtain a central limit theorem 
including cross sectional variation, 

In the original, not deviation, form, this is expressed as 

---% N(o, bk,,nt). 
N+CC 

(A4g) 

(A49) 

Note that the law of large numbers including cross sectional variation, equation (A41) assures 
that the mean of the left hand side is asymptotically zero. 

Macro Variables 

Let gmit = k,it/lc,it-i - 1 denote i-th household’s income growth rate. The GDP growth 

75See Billingsley ( 1995) pages 359-363. In our case, L and N are two indexes, but L is fixed (see 
Ueda (2003) for further discussion of the case where L, the degree of approximating the source of 
heterogeneity, also increases). Here, Lyapounov condition is satisfied. To see this, we need to 
show Ic(~f, kjCij 10FJ is bounded above by a positive real number (see Billingsley (1995) example 
27.4 in page 362), but it is bounded by the wealth accumulation for the richest person with the 
luckiest draws, that is, Ic(6’ + t)” < 00, for all t < co. 
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rate x&&t is a weighted average of individual growth rate,76 

XGrnNt = 
$ CzN,l knit-lhit 

(A50) 

The individual variable in the numerator, Ic,it-lg,it, is, like the wealth variable, a Bore1 function 
of i.i.d. et shocks, and thus is itself is an i.i.d. random variable for those who share the same initial 
wealth level. By the same logic delivering the law of large numbers including cross sectional 
variation (equation (A42)), sample average (x&jQ) converges almost surely to the true mean of 
Ic,it-igTmit conditional on the aggregate shocks 0 L. The denominator is the sample average of 
,&nit-i and also converges almost surely to its expected value. Then by the Slutsky theorem, 

a.3. 

XGmNt - aGmt, 
N+CC 

(A51) 

where aGmt is the expected value of x&Nt. 

Let dmit = d(t4, kia]0&) denote the i-th household’s decision (binary variable) to join the 
financial sector in period t as a function of history of idiosyncratic shocks. It is also viewed as an 
i.i.d. random variable for those who share the same initial wealth level. The macro participation 
rate xp,Nt is a simple average of these individual participation choices, 

1 N 
XPmNt = - N c &nit. 

i=l 
(~52) 

As above, we obtain a law of large numbers including cross sectional variation, 

as. 
XPrnNt - aht, 

N+lX 
(A53) 

where apmt is the expected value of xpmNt. 

Theil index xIrnNt, an inequality measure taking values on [0, 11, is defined as follows, 

1 N knit xlmNt E N In(N) i=l $ C”‘l IC,it c (A54) 

Again, we obtain a law of large numbers and use the Slutsky theorem for division and logarithm 
operations. Equation (A54) then converges to its expected value aImt, 

as. 
XImNt + aht. 

N-X 
(A55) 

Note that l/ In(N) is a factor to normalize the right hand side so that it will always belong to the 
[0, 11 range. 

76Since there is no population growth, the per capita GDP growth rate is the same as the GDP 
growth rate. 
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Stacking all these variables in a column vector, we write 

&nNt = 

and then define a (57 x 1) column vector, 

(A56) 

(A57) 

Similarly, we define the expected value column vector, 

a mt = 

and corresponding 
a mG bL aL,. , b)‘. 

In sum we obtain a multivariate version of a law of large numbers, 

(A58) 

(A59) 

6460) 

To use a central limit theorem and appropriate variances, we redefine individual variables 
as 

6461) 

1 N 
XN = E i=l ZiN. c (A63) 

Equation (A6O) says that this overall average of zgN converges almost surely to its true mean a,. 

For individuals sharing the same initial wealth level boj, as shown for the wealth variable, 
the average converges to its true mean az(kuj 10:) without cross sectional variation, 

G464) 
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The covariance matrix for individuals sharing boj is defined as the 57 x 57 matrix 

and overall covariance matrix b, (57 x 57 matrix) including cross sectional variation is defined as 
&-weighted average of h,(l~,~ /19:), 

As we did for a single variable (wealth), we can apply (multivariate version of) the 
Lindeberg-Lyapunov theorem and obtain the central limit theorem including cross sectional 
variation, 

Proposition (5) directly follows from this. 

Computation of Moments 

We can estimate the simulated sample estimates for the mean a, and the variance b, by 
sample analogue using individual variable ZiN in each simulation and then take an average of 
them over the simulations. However, an estimate for b, requires estimates for the individual 
variances for all the elements (i.e., 5000, 15000, , 535000 baht) of the support of distribution of 
the initial wealth. The estimates for individual variances may not be accurate given the relatively 
small number of people assigned to each element. 

Hence, we utilize yet another central limit theorem. With superscript s, xkm denote the 
realization of macro variable in s-th simulation (s = 1,2, . . , loo), keeping the aggregate shock 
history 0: fixed. This xk, itself can be viewed as an i.i.d. random sample from the same 
distribution and with large N we can regard it as almost following 3v‘( a,, b,). Hence, with 
respect to simulation number S, we can use the law of large numbers,77 

1 s a.s. 
3 c 4vTn z am, 

s=l 

and the central limit theorem, 

6468) 

(A691 

77See Den Haan and Marcet (1994) for discussions about the simulation uncertainty and accuracy 
of simulations. 
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Using these, we can construct an estimate for the mean as 

1 s i& = - 
S c Gh ) 

s=l 
C-470) 

and for the variance, 

G471) 
s=l 

Moreover, there are two possible strategies for estimates of the variance b,. The first uses 
the S = 100 simulations to construct the sample estimate for b, as defined above (A7 1). The 
second ignores the dependence on the realized sequence 8, and estimates the overall 
unconditional variance using the (larger) sample of simulations over M = 40, thus using a 
common estimate b for each b, in $Nm, 78 The second strategy actually displays less error in the 
approximation to the x2 distribution and is used for the construction of $,Nm shown in Figure 9. 

H. Proof of Proposition 6 

Proofi We transform the central limit theorem (A67) using moments around the actual Thai data 
Xn, 

6472) 

implying 

Equivalently, 
Nfi:‘,,, b$ ZNmO 2 x2@, (a, - xo)‘b;‘(a, - x0)). 6474) 

Note that, to measure the deviation of each simulated macro variable xNm from the 
unconditional mean a, replacing x0 by a will suffice. Further, if we replace each simulated macro 
variable XN, by actual Thai data x0 (but keep deviation from the unconditional mean a), then we 
can measure the deviation of the actual Thai data from the unconditional mean. 0 

78There is a trade off between two errors. One is the numerical error associated with small number 
of simulations and the other is intrinsic difference between conditional variance b, and 
unconditional variance b. 
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APPENDIX II. NUMERICALALGORITHM 

A. Outline 

The main program computes the optimal policy functions, the saving rate and the portfolio 
share, and the value functions. With these data, the simulation program computes the population 
dynamics of the economy. 

The main program consists of six parts: 

1. Set the relevant parameters. 

2. Write the functions of V(k) and W. (Ic) in order to refer to these values in the following 
procedure and to take appropriate initial function of iteration. 

3. Computation of Z(lc). 

4. Save the data of value functions and policy functions together with parameter values. 

5. Simulation of population dynamics on growth and inequality using the data of 4. 

6. Save the data of the simulation of 5. 

B. The Construction of a Compact Domain for Z(k) 

We use Z(k) in (15) instead of W(lc) in (18) for iteration. Iteration on Z(k) has at least 
two advantages over iteration on W(k). One is that the Z(lc) formulation involves simple 
integration, while the W(k) f ormulation requires an evaluation of the maximum operator inside 
the integrals. Essentially, the decision to join the financial intermediation is written explicitly for 
Z( Ic). Simple integration saves much computational time. 

The other advantage is that since Z(lc) takes the same value as V(k - 4) when Ic is high, 
we can use V(k - q) as the value of Z(lc) for k higher than some upper end point E. This is an 
exact extrapolation, which we do not get in the W(lc) formulation.79 

Proposition 3 (ii) suggests that those who have very small wealth act approximately as if 
they do not expect to join the bank ever. This implies in turn that we can truncate the domain on 
the left at some small capital K. go That is WO (k) gives us fairly accurate extrapolation value for 
Z(lc) for these lower capitals. In notation’if Ict+i goes lower than K, Z(lct+i) will be 
approximated by Wo(lct+i). In this way, we construct a compact domain [K, 771 to compute Z(k). 
Still we get the value function Z(lc) and policy function (p(k), $(k)) for all k E IR,. 

79We get the upp er end-point of the domain K for computation through trial and error. 

“Apparently, a small value of the minimum of the capital grid is better. For log utility and CRRA 
with 0 > 1, u(0) = -oo and thus we cannot include zero in the domain of value functions. We 
pick 0.01 as the minimum. 
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C. Approximation and Iteration 

We use the value function iteration method to obtain values and policies. Since the model 
uses continuous utility functions and continuous distributions of shocks, some computational 
difficulties arise. The computer can only handle discrete data, and approximation of the functions 
and integrations are necessary. 

The following is the numerical procedure to obtain value functions and policy functions. 

1. First, we choose the initial given and known function Z”(k) on given [K, E]. Basically any 
continuous function that is between W. and V is appropriate.*l 

2. Second, we construct an approximation to that 2’. This is given notationally by 

.i”(k; Ao) G C(Z”(k)), 6475) 

where C denotes the approximation procedure and A, is the parameter of that 
approximation at iteration number n. Here of course n = 0, since we have not yet done any 
iteration. 

We use the Chebyshev approximation method, which is more accurate than any 
approximation with the same number of nodes. ” This interpolates between special grid 
points by utilizing the information of all the points, and the fit is almost the best possible. 

(a) We set the Chebyshev interpolation nodes in the compact state space k E [K, K] for 
evaluating the function Z’(k). Given the degree of polynomials p and the choice of 
number of nodes m over [(, ??I, the nodes k(l) is given by 

k(l) = (x(1) + I)(- K;K)+K, (A761 

where z(Z) on [-1, l] (I = 1,. . . , m, m > p + 1) is a Chebyshev interpolation node: 

21 - 1 
x(l) = COS(xT). 0477) 

(b) Evaluate Z” at the nodes k = k(l) for 1 = 1, . , m: 

~(0 = z”MW (-478) 

(c) Then compute the Chebyshev coefficient A0 = (Aol, . . . , AOp) by the least squares 
method: 

Aoi = XI”=1 yzz(xd 
CI”=l Z(xz)” . 6479) 

*lSee the working p p a er, Townsend and Ueda (2001). 

82See Theorem 6.5.4 of Judd (1998) page 214. 
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where Ti is the Chebyshev polynomial defined over 

Ti(X) = COS(i arccos( 

[-1, l] as 

:4>. (AW 

(d) Finally, we get the approximation over all Ic: 

J?“(k; Ao) = 2 AoiTi(2z - 1). 
i=o 

(Aal) 

3. Third, we take the appropriate extrapolation. This is for the entire range of k. Specifically, 
define z’(k) for all Ic E !R as follows. 

z”(k; Ao) = V(k - q) for k > F, 

= 2’(k; Ao) for k E j&E], 

= IWO(k) fork < (. 

WW 

4. Fourth, we calculate W’(k) at each grid point by 

W’(k) = rygx ~((1 - p)k) + P J bl 
2 (k+(k P, A$> Ao) Wrl), (A83) 

11 

where k+(k P, 4, rl) = @(h + (1 - d4. 

(a) We change variables of integration. Let h(q) denote probability distribution of 77 
(recall the cdf was defined as H(q)). Given (k, p, $), k+(k, p, 4, q) is a function of q. 
Given (k, p, 4) and the specific value for k+, 7 is calculated from inverse function of 
k+ , n = k+(-‘) (k, p, $). We change the variable from n to kf and redefine the 
integrand as g(k+; Ao), a function of k+ given the Chebyshev coefficient Ao, 

J "-0 2 (k+(k> PU, Ad, Ao)Wrl) II 
=I k+Vw&i) 

?(k+, A,)h(k 
k+Fw,d>$ 

+(-l)(k, p, 4)) &dk+ 

J k+hwPd = g(k+; Ao)dk+. 
k+(k>~>~>~) 

(A84) 

(b) Here, we use the Gaussian quadrature to get the approximate value of integral. The 
Gaussian quadrature utilizes the orthogonal polynomial approximation and calculates 
the integration with good accuracy and little time. Using specific discretization of k+, 
which is { k+}fz’=“,, with associated weight wi, orthogonal approximation of the integral 
takes the form: 

J k+hv#v7) 
k+(k/v#q) 

z(k’; Ao)dk+ = 5 wiZ”(k’; A,). 
i=l 

(Ag5) 
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These (Ic+, w;)fzl are specific to polynomial and degree of approximation, which one 
can get from a table in a textbook on computation.83 

(c) Maximization over (p, 4) on equation (A83) is conducted by a grid search with 
successive refinements and simplex method. 

5. Finally, we take the value of Z’(k) for each Ic = It(l). 

Then we approximate the Z1 (k) as same as Z’(k); i.e., i’l(lc, A,) = C(Z’(rC)). From this 
we can calculate IV2 (k), and construct Z2 (Ic) . This makes 2” (,4, A2). 

6. Iteration goes until Z(k) converges to a fixed point. 

D. Numerical Approximation of Evolution of Population Density 

After the optimal policies ( ,u( Ic) ,4( Ic)) are obtained from the numerical computation, 
given the initial distribution of the wealth, &ro(lci), the wealth distribution at each period for 
nonparticipants is recursively derived by equation (30). Then we approximate analytical 
distribution Q(lc’; Ic), equation (29), given k and k’ with a computer that cannot handle continuous 
distribution. We thus use the step function approximation with finite grids. Given an initial 
distribution of Icl defined on a grid, we define the distribution k2 using the nearest point in the grid 
as the approximation for a particular k2. 

Note that as economy grows, the wealth distribution will disperse more. This creates some 
difficulties that, in each tail end of distribution, mass become tiny and could not be captured by a 
computer. Here we face a trade-off, that is, making the grid space finer increases accuracy for 
early periods when the distribution is thick everywhere, but reduces accuracy for later periods 
when the distribution becomes wide-spread. 

83See Hildebrand (1987) page 392 for a table. 
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