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A stochastic volatility model where volatility was driven solely by a latent variable called 
news was estimated for three stock indices. A  Markov chain Monte Carlo algorithm was used 
for estimating Bayesian parameters and filtering volatilities. Volatility persistence being 
close to one was consistent with both volatility clustering and mean reversion. Filtering 
showed highly volatile markets, reflecting frequent pertinent news. Diagnostics showed no 
model failure, although specification improvements were always possible. The model 
corroborated stylized findings in volatility modeling and has potential value for market 
participants in asset pricing and risk management, as well as for policymakers in the design 
of macroeconomic policies conducive to less volatile financial markets. 
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1. INTRODUCTION 

This paper estimates time-varying volatilities for three stock market indices: the Dow Jones 
Industrial Average, the FTSE 100, and the Nikkei 225 indices over the period January 1, 
1999-September 24, 2002. Modeling of financial time series has focused on estimating the 
time-varying volatility. The latter is key for measuring risk, pricing asset derivatives, and 
hedging strategies (e.g., Hull and White, 1987; Chesney and Scott, 1989). Volatility, being a 
second moment, characterizes the uncertainty that the market assigns to the price of a 
particular asset. It provides market participants with up-to-date information on market 
sentiment and reactions to news, market beliefs about the future, and the changing attitude 
toward risk from bearish to bullish and vice versa.’ As it turns out, dealers quote options’ 
prices in terms of volatilities and strike prices in terms of deltas.3 Besides market 
participants, the IMF and central banks have also a special interest in volatility as a source of 
information for gauging market expectations and reactions to news, assessing monetary 
conditions and monetary policy, and influencing the timing and effectiveness of monetary 
operations and interventions. In its surveillance role, the IMF monitors volatilities of asset 
prices and related derivatives’ prices in both mature and emerging markets with a view to 
promoting macroeconomic policies conducive to financial stability, whereas monetary 
authorities routinely use the information that is embedded in financial assets to help in 
formulating and implementing monetary policy. Section II of the paper presents the 
stochastic volatility model (SVM) as proposed by Taylor (1986) and that later became the 
main framework for estimating stochastic volatility.4 Section III describes the estimation 
methodology. A main feature of the SVM is the intractability of its likelihood function. In 
this section, a Markov chain Monte Carlo algorithm is used for estimating the parameters in a 
Bayesian context as well as the volatilities of the SVM. Section IV presents the empirical 
estimates of the parameters, the filtered volatilities, and the diagnostic checks of the model; 
and Section V concludes. 

’ Market participants may also be interested in the entire risk-neutral probability distribution 
for an asset price at a future date T with a view to third moment (skewness) and fourth 
moment (kurtosis). First moment, given by forward and futures prices, measures only the 
expected level and does not capture uncertainty, which is accounted for by the volatility. 

3 The delta of an option measures the change in the option price in response to a change in 
the current price of the underlying asset. 

4 Surveys on the models of stochastic volatility can be found in Shephard (1996); and 
Ghysels, Harvey, and Renault (1996). 



-4- 

II. MODELINGVOLATILITY 

Modeling volatility is key for pricing asset derivatives.’ Time-varying volatility model was 
initially expressed by Engel (1982) as an autoregressive conditional heteroskedasticity 
(ARCH) model. A volatility model is defined by its first and second moment which can be 
referred to as the mean and variance equation. 

Mean equation: yt = oI E, 

Variance equation: a: = p + f$ yi, 

yt = the returns on asset prices, defined as yt = 100*Log(X&~i), where X, is the observed 
market index or the asset price. 
a,” = volatility of the asset returns. 

Volatility is a measure of risk on returns. Each observed data pointy, has a standard 
deviation a,. The disturbance E, is Gaussian, i.e. E, - iid N(0, 1). In the ARCH model, 
volatility is a deterministic function of the squares of past return and therefore is an observed 
variable. This model was extended by Bollerslev (1986) to become a generalized 
autoregressive conditional heteroscedasticity (GARCH) model: 

Yt = ot El 
a: = P + a r,“_, + P 6, 

In this version of the model, the volatility is a deterministic function of the squares of past 
return as well as of past volatility. The GARCH formulation introduces terms analogous to 
moving average terms in an ARMA model, thereby making forecast a function of a 
distributed lag of past squared observations. Apart from volatility clustering, i.e. prolonged 
periods of high and low volatility, a GARCH model captures part of the excess kurtosis 
observed in financial time series. Subject to the parameter restrictions: ,u >O, a 2 0, p 2 0, 

5 A basic formula for pricing contingent claims is the Black-Scholes formula (1973). For 
instance the price of a European call option is given by 
C(S, K, T, t, r, a) = S.N(d,) - K.N(d,), where S is the current price of the underlying asset, 
K = the strike price, T = the maturity time, t = the current time, Y = the risk free return, and cr 
is the volatility of S The symbol N(.) is the cumulative normal distribution: 
d 

I 
= log(S) - log(K) + (r + 0.5a2)(T - t) 

CT T-t 
and d, = d, - crJ= In this formula, all the 

variables, except cr , are known. Therefore, pricing a contingent claim amounts to 
estimating 0 
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and a + p < 1, it can be shown that the fourth moment will exhibit excess kurtosis: 

KEE(4 > =3+ 6a2 
Ky = E(a,2)2 1-p” -2afl-3a2 

and therefore K, > K, , where K, is the kurtosis of 

E, .6 The GARCH model has been extended to become a stochastic GARCH 

Where vt - iid N(0, 1) is called the volatility of volatility. The disturbances E, and vt may 
be assumed to be independent or correlated. Correlation between the random disturbances 
introduces a leverage effect.7 The mean equation is now affected by two error terms, E, and 
vt In virtue of the Gaussianity of E, and qt, the ARCH and GARCH parameter vector 8 
=( ,u , a , p , CT, ) can be estimated using the likelihood method. The SVM was proposed by 

Taylor (1986), to make volatility dependent on a latent, unobservable state variable h, called 
news, via the relation:8 

Log a,2 = h, 

h, is referred to as log volatility of yt . Replacing crt by exp( h, /2), the SVM is a log- 
volatility model and is written in a state space form 

(1) Observation equation: yI = exp( h,/2)&, , E,- iid N(O,l), t=l,......, T 

(2) Transition equation: h, = ,u +4 (h,-, -,u ) + crV qt , qt - iid N(0, ai ), t=l,......, T 

4,-Ww-,2~U-~2N 

6 It is often necessary to use a non-Gaussian GARCH model, such us the Student-t 
distribution for&, , to capture the high kurtosis typically found in financial time series. 
7 The leverage effect, analyzed by Black (1976) suggests that stock price movements are 
negatively correlated with volatility. Because falling stock prices imply an increased leverage 
of firms, more uncertainty, and hence volatility, will arise. 

* Contrary to ARCH-GARCH models where volatility is observed, in the SVM, volatility is 
latent. Asset prices move through a sequence of equilibria, where a move from one 
equilibrium to another is prompted by the arrival of new information to the market. While the 
agents realize the information and act upon it, the econometrician can only observe the asset 
prices, which result from the agents’ actions and is forced to model the information as a 
latent variable. 
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The parameter vector is 9 = (p,$, a,). The initial conditions for the state, ho, are given by 

the unconditional mean and variance of h, , i.e. ,u and at /(l - 4”)) respectively. 

SVM is solely interested in market news and in modeling their effects on volatility. Contrary 
to ARCH-GARCH models, volatility in SVM is not affected by past returns. SVM arises as a 
discrete-time approximation to various diffusion processes analyzed in the continuous-time 
asset-pricing literature.g A state space model specifies in the observation equation (1) the 
conditional distribution of the observation y, given the unknown state h, The state 
variable h, , appearing nonlinearly in the observation equation, determines the amount of 
volatility (variance) of each data point yt If the information flows are autocorrelated, then 
the state variable may be assumed to follow a Markov process given by the transition 
equation (2). The value of 4, -l<@ cl, measures the autocorrelation present in the logged 
squared data, i.e. log(yf ). Thus4 can be interpreted as the persistence in the volatility, with 
high 4 indicating volatility clustering. The constant scaling factor/? =exp( Jo /2) is seen as the 
modal volatility, and crrl as the volatility of the log-volatility. The stationarity of h, , or mean 

reversion, is given by the restriction -l< 4 cl; it implies the stationarity of yt . The variance 
ofy, is related to the variance of E, and h, : Var( y, )=Var( E, )exp(Var( h, /2)). If the fourth 
moment of E, exists, the kurtosis ofy, , K,, is equal to K, exp(Var( h, /2)), where K, is the 

kurtosis of E, and therefore K~ > K, , allowing the SVM to capture part of the excess kurtosis 
observed in financial time series. Finally the odd moments are zero. 

’ The stochastic volatility model can be seen a discrete-time approximation to the Hull and 
White derivative pricing mode1(1987), where the stock price dynamics are governed by some 
unobservable state variables, such as the random volatility. In their model stock prices follow 
a diffusion processds, /S, = adt + a(t)dWl , and the logarithm ofa follows a diffusion 
process given by the Ornstein-Uhlenbeck (O-U) process: d(ln a) = A(5 - In a)dt + $W,, 
where S, = stock price, a(t) is the instantaneous variance of S,, W, and W, are two Wiener 
processes. The SVM is also a discrete-time approximation to the term structure of interest 
rates model dr(t) = K, (A - r(t))dt + a(t)dW, (t) (Vasicek, 1977) or 

dr(t) = K, (A - r(t))dt + a(t)dr(t)dVl (t) (Cox, Ingersoll, and Ross, 1985) 
wherer(t)=interest rate, and the stochastic volatility is given by the O-U process 
d log o2 (t) = K, (a - log CT’ (t))dt + CdW, (t) 
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111. ESTIMATIONMETHODOLOGY 

A. The Maximum Likelihood Dilemma 

The objective of the SVh4 model is to estimate simultaneously the parameter 
vector0 = (,u, 4, a,) and the volatility vector h = (4,. . .,hT ) conditional on the observed 

data set Y, = (y, , . . . .,yr ). Denoting conditional expectation by E(h, 1 q, 0) , where 
Y, = (y, ,. ., y,) , then E(h, 1 Y,, 0) is called predicted volatility when n > t , filtered volatility 
when t = n, and smoothed volatility when n < t. Despite its parsimony and its appeal for 
modeling market news, the SVM given by equations (1) and (2) is not easy to fit by standard 
maximum likelihood methods. Because the observation equation is nonlinear in the state 
variable, direct application of the Kalman filter and the associated smoother will yield 
estimators of the state h, which are only optimal within the class of estimators based on linear 

combinations of logy:. The marginal likelihood over the parameters of the SVM is defined 
by a T-dimensional integral. Indeed, given the parameters 0 = (,u, 4, oV ) , the likelihood of 

the SVM is the density of data (y, ,. ., yr ): 

L(6) = f(y 16) = lf(y, h 1 B)dh CC (proportionaZ)~f(y 1 h, B)f(h I B)dh lo 

Denoting Y,-, = (yl,. . .,ytml ) , the density of the data can be expressed as a mixture over the 
h, distributions: 

t=1 C=l 

This likelihood function is intractable, i.e., it cannot be easily computed. The source of the 
problem is that the density f(h, 1 Ytml, 0) cannot be expressed in closed form, and therefore 
yt I Y,-, does not have an analytic expression. As a result, the likelihood function must be 
approximated or calculated by some kind of simulation method. 

One example of approximation to the SVM uses the quasi-likelihood method by transforming 
the SVM into as a non-Gaussian but linear state space: 

yt*= logy; = h,+ log&,2 

lo This relation derives from Bayes formula. Let A and B be two events, then Bayes theorem 

states P( A I B) = P(RLfg(A) where P(A) and P(B) are the marginal probabilities of the 

random events A and B , respectively. The proportionality factor is P(B). 
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Where log E: - iid log 2: (log chi-square) with E(log Ef )=- 1.27 and Var (log E: )=4.93. 
Consequently, the Kalman filter can be used to provide the best linear unbiased estimator of 
h, given Y,‘, = (y,‘,......, y;-,) F or instance, Harvey et al., (1994) have employed Kalman 
filtering to estimate B =( p, 4, ai ) by maximizing the quasi-likelihood: 

logLJy* IO)=-1/2ilogF, -I/2&: lF, 
C=l 14 

where y* = (y,‘,......., yf), v, is the one-step-ahead prediction error for the best linear 

estimate ofy,*= logy:, andF, is the corresponding mean square error. It turns out that 

log &,2 - iid log x,2 is poorly approximated by a normal distribution and filtered volatilities 
estimates have higher standard errors compared to estimates from simulation methods. 

B. Markov Chain Monte Carlo Methods 

As mentioned above, a key issue is that the likelihood function 

f(Y I Q> = [f(Y I h> w(h I Wh is intractable. This precludes a direct analysis of the 

posterior density f(O I y) As a solution, Jacquier, Polson, and Rossi (1994) advanced the 
method of the Markov chain Monte Carlo (MCMC) based on the general approach of Carlin, 
Polson, and Stoffer (1992) and on the method of data augmentation for computing posterior 
densities proposed by Tanner and Wong (1987).” Data augmentation is seen as an algorithm 
that allows the estimation of the parameters 9 without computing the likelihood function. 
Basically, the parameters8 are augmented with the time series h to form a large parameter 
vector (0, h ). The joint distribution of ( 0, h ) conditional ony , denoted by f(O, h 1 y) , is 
now the focus of attention. MCMC can be developed to sample this density without 
computing the likelihood fUnctionf(y I 0) Viewing the specification of the SVM as a 
hierarchical structure described by three conditional distributions: y 1 h , h I 0, and f(O), 
where f(O) is the prior distribution of 0, the joint posterior distribution of (0, h ) derives 
from the application of Bayes theorem. Hence f(0, h I y) is proportional (ot ) to the product of 
these three densities: f(O, h I y) CC f(y 1 h)f(h 1 B)f(B) . 

l1 The idea of data augmentation was explored by Dempster et al., (1977) as a way to 
overcoming complex maximum likelihood functions by developing the two step expectation- 
maximization EM algorithm. In the expectation step (E) and for a given value of the 
parameter vector, 8, the observed data is augmented by a nonobserved (missing) data set, h 
In the maximization step (M), the maximum likelihood function for the augmented data set 
( y, h) turns out to be easier to compute and a new value for 8 is derived. This new value is 
used in the E-step to compute a new set of latent variables, which form a new augmented 
data set. The EM algorithm is iterated till convergence obtains. 
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The MCMC method is simple and extremely general. In order to sample a given probability 
distribution that is referred to as the target distribution, heref(6, h I y) , an ergodic Markov 
chain (i.e., irreductible and aperiodic) is constructed with the property that its limiting 
invariant distribution is the target distribution. Once the Markov chain has been constructed, 
a sample of (correlated) draws from the target distribution can be obtained by simulating the 
Markov Chain a large number of times and recording its values. Let the marginal 
distributions arising from the joint posterior distribution f(6, h I y) be f(6 I y) and f(h 1 y) , 
then by appealing to ergodic theorems for Markov chains, inference can be made about the 
posterior moments of 6 and h from these two marginal distributions, respectively. To 
construct the Markov chain with invariant distribution f(6, h I y) , Tanner and Wong (1987) 
proposed an iterative data augmentation algorithm: (i) first sample 8 from f(B 1 h, y) ; (ii) and 
then sample h from f(h I 6, y) , using the value of 6 fi-om step (i); (iii) iterate till 
convergence. 

Sampling Algorithms: The Gibbs and the Metropolis-Hastings Algorithms 

To produce sample variates from the joint posterior distribution of the volatilities and 
parameters given the data, Gibbs or the Metropolis-Hastings (M-H) sampling algorithms are 
used to construct Markov chains with equilibrium distribution the joint distribution. To 
illustrate each algorithm, let a multivariate distribution be defined as X(W). In the Gibbs 
sampler, the variables are grouped into p blocks ( I,V~ ,. .,w,) , and each block is sampled 

according to the full conditional distribution of block I+V, denoted by z(v/~ 1 I+Y-,) , where t,umk 
denotes all the blocks excluding v/~ Derivation of the full conditional distribution is usually 
quite simple since, by Bayes theorem, x(v/~ 1 w_,) 0~ x((Y~, v-,) , the joint distribution of all 
blocks. In addition, the powerful device of data augmentation, due to Tanner and Wong 
(1987) in which latent or auxiliary variables are artificially introduced into sampling, is often 
used to simplify the derivation and sampling of the full conditional distribution. For some 
blocks, the conditional distribution may not be easily sampled directly. One can then use a 
Metropolis-Hastings (M-H) step whereby v/ is sampled from a blanketing density q(v/, I+v’), 
i.e. upper bounding density; q(Iy, I,/) is also called a proposal density which provides a 
candidate value r,~’ . The new draw I,V’ from q(v/, r,u’) is accepted with probability 

Otherwise, the previous draw, i.e., cy, is repeated, and one moves to the next block. The 
draws from the simulated distribution converge to draws from the stationary distribution 
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namely the required joint posterior.” It may be mentioned that if the full conditional 
densities are available, whether in the context of the Gibbs or the M-H sampler, then the 
MCMC output can be used to estimate posterior marginal density functions. l3 

Application of the Sampling Algorithms to the SVM 

For the SVM given by equations (1) and (2), Jacquier et al., (1994) showed that the Gibbs 
blocks can be written as f(,~, 4,0~ I y, h) 0~ f(y, h I ,u, #, a, )f(p, 4, a,) and T conditionals 

f(ht I LYtA4>~q) h w ere he, means all elements of h, ,.. . . . . h, except ht. Since the model 

has a Markov random field structure, the conditional distribution f(h, ) h-, , yt ) can be written 

as mt I h-t ) Yt ) cc mt I ht V@t+, I ht )f@ t I ht-, 1’ 
A Gibbs sampler for the SVM which produces variates from the joint posterior distribution of 
( h , 0) can be described as follows 
1. Initialize h and 6 
2. Sample h, from h, I h-, , y ,B t=1 Y”““‘, T 

3. Sample 0; lu,h,d,~ 

4. Sample 4lyJww~ 

5. Sample rul.Od,~~ 
6. Go to 2. 

While sampling from the conditionals of the parameters6 is relatively easy, provided 
conjugancy of the prior distribution is appropriately chosen, sampling from h, I h-, , y ,6 
requires more efforts in spite its Markovian structure for essentially two reasons. First, the 
constant of proportionality is unknown in the approximation 
f(ht I h-t 3 Yt 1 cc BY, I ht )f(ht+, I ht Mht I k, > 
Second, f(y, I h,)f(h,+, I h,)f(h, I h,-,) yields a non standard kernel density which is the 
product of normal and log normal densities. As mentioned above, the solution is to find a 

l2 Chib and Greenberg (1994) discuss a way of formulating proposal densities. They suggest 
matching the proposal density to the target density at the mode by a multivariate normal or a 
multivariate-t distribution with location given by the mode of the target density and the 
dispersion given by the inverse of the Hessian evaluated at the mode. Specifically, the 
parameters of the proposal density are taken to be m = arg max log n(v) and 

v = z{- a2 1% ;‘c(v) >-I 
awaw’ (&j,. The proposal density is then specified as 

dv’) = f(v/’ I m, U where f is a multivariate normal or t-density. 
l3 Marginalization of one variable over the MCMC output is called Rao-Blackwellisation 
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blanketing, i.e. an upper bounding density function g(h, I h_, , yt ) , which has a standard form 

and from which it is easy to draw variates {h,‘,‘,.. ....,h,‘“‘} for the estimation of the 
volatilities. If there exits a constant C such that f(h, I h-, , yt ) I Cg(h, I h-, , yt) ‘dh, , one can 
sample from f(h, I h-, , yt ) by drawing from g(h, I h-, , yr ) and accepting with probability 
f(h, I h_, , y,) I C&h, I h-, , y,) One can also sample from g(h, I h-, , yt ) using an accept/reject 
Metropolis-Hastings algorithm. 

The computation of the kernel off(y, I ht)f(ht+, I h,)f(h, 1 h,-,) is carried out by taking the 
product of three kernels f(y, I h,) , f(h,+, I h,) , f(h, I h,-,) Note that the errors of the SVM, 
E, and vt , are iid N(0, l), implying from equations (1) and (2) that 

Yt I ht - NO, exP(ht ) ), ht+, I ht - WP + d(h, - ~u),ai 1, and h, I A,-, - N(P + cW-, - ~>,a; > 
It follows thatf(y, I h,) cc (exp(h,))-OS exp(-0.5yf /exp(h,)), 

f(h,+, I h, > a 0;’ exp(-Wh,+, - P - 4(ht - PU>>” / 0,: 1. 
f(h, 1 h,-,) a a;’ exp(-0.5(h, -P - 4(h,-, - ,4>” la;). 
Taking the logarithm of the product of the three above conditional densities, the following 
relation is obtained: 
bctW I k+,A.h) = h3f(y, I Mf(h+, I Uf(h, I k,) = c*nst +lwf’, where 
logf’= -0.5ht-0.5(ht-ht*)2/~2-0.5y~exp(-ht), 

ht*= [,~(l-4 )++(h,+, +ht-,)]/(42+1), and a2=cri/(42+1). 

Taking the first order Taylor expansion of exp(- h, ) around ht* , then 

logf’ <-0.5ht-0.5(ht-ht*)2/a2-0.5y~{exp(-ht*(1+ht*)-htexp(-ht*)}= log(g*). 
Accordingly, log(g*) is a bounding function. The density g* has a normalized distribution, 

withmean St =h,* +0.5a2[yfexp(-ht*)- 1]andvariancea2=ai/(42+1).Therefore,in 

order to sample variates from f(h, I h,,, , h, , yt ) , one can draw proposals from h, - N( 6, , CT’ ) 

and accept with probability f ‘I g* 

A Bayesian Approach: Priors of the Parameters 6 = (,u, 4, ai) 

The SVM is estimated in a Bayesian approach. A prior distribution is formulated for each of 
the parameters 6 = (,u, 4, at ) . The same priors used in Kim et al., (1998) are considered here 
It is assumed that each parameter is a prior independent. Conjugancy is fully addressed so 
that the posterior distribution of the parameter would be a standard one with easily computed 
moments. Thenceforth, for ai a conjugate prior is assumed; namely ai is believed to be 

distributed as an inverse-gamma (IG): ai 14, ,D -IG( crlG /2, S, /2). For 4, the following 

relation is postulated: 4 =2 0’ - 1 where 4‘ is distributed as a Beta with parameters +(I) , b(2) 
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The priorf(+) has support on the interval (-1,1) with prior mean of { 2 $“‘/( #(,) + #‘“‘)-1 }. 
For @ ‘=20, 4’=‘=1.5, the prior mean of 4 is 0.86. Finally a diffuse, i.e., non informative, 
prior is assumed forp . 

Multimove Sampling of the Volatilities: Approximation of the SVM by a Conditional 
Gaussian State Space 

It is well established that single move Gibbs or Metropolis-Hastings samplers, which sample 
each volatility h, separately, t=l,. ..,T, produce a highly correlated sample and are slow to 
converge. Multimove samplers which sample all latent volatilities h = (h, ,. ., h, ) at once 
produce less correlated variates and are faster to converge. Carter and Kohn (1994) 
Shephard (1994) Kim et al., (1998) and Chib et al., (2002) suggested converting the 
nonlinear non Gaussian state space model into a linear and conditionally Gaussian state space 
model relying on an offset mixture of normal distributions as an approximation to the log 
chi-square distribution log x,2 In the conditionally Gaussian model, the density of the data 
has an exact likelihood and all volatilities can be estimated at once using the Kalman filter. 
The approximating model is: yt* = h, + z, , where yt* = log( y: +c),14 

K 

andf(z,)=x qifN(ztIml-1.2704, vf) 
i=l 

is a mixture of K normal densities f, with component probability qi , means mi -1.2704, and 

variances vi” . The constants { qi , mi , vZ? } are selected to closely approximate the exact 

density of log&: . It should be noted that the mixture density can also be written in terms of a 
component indicator variables, such that 

z, 1 s, =i - N( mi - 1.2704, vZ? ), Pr( s, = i) = qi 

In the mixture model, the joint posterior density under focus is f(S, h, 4, ai, ,u I y’) , where 

s = (s, ,. .,s, ) Because y* I s, 4, af , ,u is a Gaussian time series model, it follows that all 

h = (h, ,....,h,) can be sampled at once from the entire Gaussian distribution h I y*, s, 4, ai, ,u , 
using the Gaussian simulation smoother (e.g., Kim et al., 1998; Chib et al., 2002 ). As for 
sampling s from s I y*, h , this is done by independently sampling each s, using the 
probability mass function 
Pr(s,= i Iy,*,h,)a qi fN(yt*Iht+mi-1.2704, v~!), i<K. 

l4 The offset c was introduced into SVM literature by Fuller 1996, (pp. 494-497), in order to 
robustify the QML estimator of the SVM toy: being very small. 
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Exploiting the linearity of the conditionally Gaussian state space, Kim et al., (1998) noted 
that correlation can still be reduced if the Gaussian structure ofy* I s, 4, at, p is used.” It is 

possible to sample the joint distribution f(h,b, crd, ,u I y*, s) by sampling: 

( 4,~; > from fM 0; I y* , s> a f(y* I s, $, 0; >f(@, 0;) and then sampling (h, P> from 
f(h, ,D I y*, s, 4, ai) . This improved version of the mixture sampler is called an integration 

sampler because (h, ,u) are analytically integrated out of the kernel density of yt* 
The algorithm of the integration sampler is then generically: 
1. Initialize (p ,s, q5, crq ) 

2. Sample 4, ai from f(@, at I y*, s) , where y* = (y,* ,. ., yi ) using a Metropolis-Hastings 

suggestion based on a proposal density g( 4, crd ).16 

3. Sample h , ,D I y*, s , 4, ai using an augmented version of the Kalman filter. l7 

4. Sample s(y*,h usingPr(s,=i Iyt*,h,)a q, fN(yrIht+ml-1.2704, v,“). 
5. Goto 2. 

The integration sampler therefore draws h and p jointly, In addition, sampling the posterior 

joint density (@,a;), i.e., f(@,ai I y*,s) a f(y* 1 s,$,ai)f(4,crt) is easy because 

f(y* I s, 4, al ) can be evaluated using an augmented version of the Kalman filter. 

l5 Consider yt* = h, + z, , and h, = p + 4 ( h,-, - p ) + cr, vt Substituting for h, 

yields yt*= p + 4 (h,-, -p ) + crq qt + z, Substituting for h,_, = yt*_, - z,~, yields 

Y:=P +MYt*-1 - zt-1)-P > +a, qrt + z, = ~(1 - 4) + tit;1 + oqqt + z, - ha,-, Since the density 

of yt* is a function of the densities of the error terms 77, and z, , it is therefore affected only 

by the parameters# and crd 

16 g(&a;) could b e a Gaussian or a Student-t distribution. For instance, one can make a 

proposal draw 6”) from a tailored multivariate-t density f, (6 I m, V, 5) with 5 degrees of 
freedom, where m is the value that maximizes the density log f( yt* Is, 0) and V is minus the 

inverse Hessian of log f(yt*l s, 6) evaluated at m This approach for specifying the proposal 
density was introduced by Chib and Greenberg (1994). The proposal value generated from 
this density is then accepted or rejected according to the Metropolis-Hastings algorithm. 
l7 See Kim et al., (1998) for details on the augmented Kalman filter. 
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As in any approximation sampler, reweighting the output is required to get closer to a sample 
drawn from the exact posterior density of the parameters and volatilities, i.e. f(B, h I y) The 
reweighting coefficients are computed as a difference between the true and approximated 
density. Let the mixture approximating density be k(6, h I y”) and define: 
w(6, h) = logf(6, h I y) - log k(6, h I y’) = const + log f(y ( h) - log k(y* I h) where 

.fWO=~h,~x ICw(W and YY* Ih)=fi 2 qifN(Y:Iht+m,-1.2704, v,“) 
f=l C=l i=l 

Both these functions involve Gaussian densities and are straightforward to evaluate for any 
given value of h Then, the moments of the conditional distribution f (6 I y) can be defined 

ace I Y) = Jgw.w I y)de = 
j js(e>exp{w(e,h)}k(e,hl y’P&l’hlj. I exp+Wh>>k@%h I y*)dah. 
Thus we can estimate the moments of the posterior distribution by reweighting the MCMC 

draws according to Eg(6 ( y) = 2 g(6 j)c j , where 
j=l 

ci = exp(w(61,hj))l~exp(w(6i,hi))and {(@‘),h(‘)),....,(B @ ‘), hCM’)}is a sample of size 
i=l 

A4 of the MCMC output. 

IV. APPLICATIONOFTHESVMTOSTOCKRETURNS:EMPIRICAL ESTIMATES’* 

A. Parameter Estimates 

Estimated coefficients of the SVM for the Dow Jones Industrial Average, FTSE 100 and 
Nikkei 225 using daily data from l/1/1999-9/24/2002 are reported in Table 1. The posterior 
means of @  is close to one, ranging between 0.94 and 0.97. These values imply high 
persistence in conditional variances, in accordance with typical estimates reported for the 
SVM models. Being strictly less than one, the estimated persistence coefficient tends to 
support the hypothesis of mean reverting volatility, i.e., random shocks to volatility will 
eventually taper off with a half-life of a few weeks. Estimates ofa, being relatively small, 
between 0.15 and 0.17, are similar to estimates reported for the SVM models and imply a 
good fit of the volatility process by equation (2). The mode volatility, fl, is high, ranging 
between 1.15 and 1.38, implying that major daily news occur frequently with sizeable effect 
on volatility in stock markets. The distributions of the volatility parameters (p, 4, a,) are also 
concentrated around their means, implying thus statistically significant coefficients. In view 
of these results, the SVM tends to capture adequately the behavior of the stock indices. 

‘* All estimations in this section were obtained using the SV package developed by Kim et 
al., (1998). The results were based on their integration sampler. 
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osterior Parameter Estimates from the R 

B. Filtering 

The most important problem in the SVM is the estimation of the time-varying variance, i.e., 
the state h, , from the observations Y, = {y, ,...,yt } for purpose of pricing assets, hedging, and 
risk management. Based on estimates of 6 in Table 1, the problem of state estimation can be 
handled as an evaluation of the conditional density f(h, I Y,, 6) ,which is a predictive density 
when n > t , filtering density when n = t , and smoothing density when n < t Once we have 
a sample (ht(l) ,....,.. ,h,‘“‘) from f (h, I Y, ,6) it is possible to produce many interesting 
quantities. For instance, the mean of the sample draws provides an estimate of E( h, I Y, , B), 
which is the minimum mean square error estimate of the log-volatility. We can estimate the 
likelihood function and the predictive distribution function u,,, = Pr(y,+, I yf,, 1 Y, ,6) for a 

predictedy;, , both useful for diagnostic checking. For the standard linear Gaussian state 
space model, each density f(h, ) Y,, 6) can be expressed by a Gaussian density and its mean 
vector and the variance-covariance can be obtained by computationally efficient recursive 
formulas such as the Kalman filter. For non Gaussian nonlinear state space model, each 
density has to be approximated using various types of approximation methods; among these 
methods a Monte Carlo particle filtering has been suggested by Kitagawa (1996) Kim et al., 
(1998), and Shephard and Pitt (1999). 

Filtering consists of updating the state h, given contemporaneously available data 
Y, = (Y,-, , yt ) . Therefore the updating is triggered by the availability of new 
contemporaneous datay, As in any forecast exercise, before updating the forecast, it is 
useful to know first what has been forecast one period earlier, i.e. at time t - 1. The general 
principle of updating can be expressed as: posterior=(data)(prior). Let the predictive density 
be f(h, I Y,-, ,6) ; assume a Monte Carlo sample is drawn from this predictive density 

{h$i, ,........., hi;;} Each element of this set is called a particle. There are therefore 
A4 particles which could be thought of as the forecast made at time t - 1. Filtering consists of 
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updating {hi:?, , . . . . . . . . ., h$ } conditional on information yt into a new set of particles 

{ht(l) , . . . . .,h,‘“‘} called particle filter. The knowledge of the relation between the filtering 
density f(h, I Y,-, , yt ,6) and the predictive density f(h, / Y,-, , 0) is therefore crucial. Using 

Bayes theorem: f(h, I Y,, 8) = f(h, I Y,-, , Yt, @  = f(Y, I ht 7 L, T W(ht I T-1 43 
f(Yt I F-1 8 

This relation stipulates clearly that a set of particles from the predictive density could be 
transformed into a set of filtered particles if reweighted by the Bayes coefficient’g 
f(Yt I ht > Y-1 > 0) 

f(Yt I Y,-&9 . 
In view of this relation, filtering is a recursive procedure involving a 

prediction stage followed by a resampling (updating) stage. 

(i) The predictive density 

In view of equation (2) of the SVM, the predictive density can be expressed as 

f ( h, I Ytq,@  1 =If(ht , k, I L, 3 0% =Jf(ht I k, 7 e>f(ht-, I Y,-, > W%, 
Given a set of particles { hi!: ,...., h:-$ } from f (h,-, I Y,-, ,6) and observing that 

f(h, I h,-, ,6) = f, (h, I p + q& - p), at) has the normal density, the predictive density can 
M 

thus be approximated by f ( h, I Y,-, ,6) z dc f, (h, I h,‘l,‘, 6) . Particle predictors can be 
l-1 

sampled as h$“,- N(p +4(h:!i - p),o,‘). yielding a set {h&,......,h$}which can be 
considered to be M realizations from the predictive density and which can be used to 
approximate this density. 

(ii) The filtering density 

The filtering density can be approximated as 

As filtering consists of updating the predictors’ set based on new datay, , it has necessarily to 
use the probability distribution of the data as given in equation (1). To estimate particle 
filters, Kitagawa (1996) suggested computing the likelihood of each predictor given by 
aii) = f(y, I h$“, , I’-, ,6) and using importance resampling to draw h,“’ from the importance 

lg Note that the likelihood function is f(y, I Y,-, ,6) = j f(y, I h,, Y-, , @)f(h, 1 Y_, , @dh, 

Note also thatf(y, I h,, Y,-, ,6) is called the likelihood of h, . 
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density f(h, I h:!;, 6) = N(p + @(h,‘il’ - p), CT;), with importance weights given by 

&) - 
a!(i) 

t 
t - (a,(‘) + . . . . . . . +a,‘“‘) 

The set of particles {h,“‘,. . . ., h,‘“‘} generated by this algorithm 

are considered to be M realizations from the filtering density f(h, I q, 6) 

Kim et al., (1998) proposed an accept/reject algorithm for sampling {hi”,. ., hJ”‘} using a 

blanketing density g* ( yt , ht , h,,,-, ,4). Let h,,,~, = p + 4(& hJ!/ lM) - p) and note also that 
j=l 

the log likelihood function can be expressed as: log f ( yt I h, ,6)=const+log f* (y, , h, ,6), 

where log f* (y, , h, ,6) =-0.5 h, -0.5 y: exp(- h, ). Now expand log f*(y, , h, ,6) in a Taylor 
series around the known value h,,,-, as: 

log f*(y, , h, ,0) =-0.5 h, -0.5 y: exp(- h,) I 0.5 h, -0.5 y,” { exp(- h,,,J 1+ h,,,-, )-h, exp(- h,,,-, )} = 

~~~g’~Yt~ht~ht,t-,~~). 
Using this inequality, the filtering density could be shown to be bounded above as: 

$Cg*(y,,ht,ht,t-,&‘)f(ht Iht%@. 
I-1 

Given that f(h, I h>J:, 6) = N(p + +(hi!! - p), a;), Kim et al., (1998) showed that the right 
hand side of the above inequality is a mixture of normal densities 

$-~g*(YtAht,t4 6) 3 f(h, 1 h,‘l:, 6) = 2 +)fN (h, I h:!,’ , 6) 
I-1 j=l 

Therefore, the availability of a blanketing normal density suggests a simple accept-reject 
procedure for drawing ht. First, draw a proposal value from the normal mixture 

density 2 iz,“‘f(h, I hj!!, 6) Second, accept this value with probability 
j=l 

The filtered volatilities along with the absolute values of the returns are shown in Figure 1. 
Contrasting volatility and returns, Figure 1 shows that periods of high volatility cause large 

2o The filtered volatilities can be used to estimate the likelihood function. Note the one-step- 

ahead prediction density, f(y,+, I Y,,6) can be approximated as (l/M)5 f(y,+, I h,‘,‘l) , with 
j=l 

h,‘:l I h,“’ -N( ,u + 4 ( h,“’ - p ), cri ) and h,“’ d rawn from the filtering simulator. 
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changes in the returns, whereas periods of low volatility cause small changes in the returns. 
The level of the filtered volatility at any point in time enables to infer about the state of the 
market and the effects of the news hitting the market at that point of time. Tracking volatility 
therefore enables to assess the uncertainty expected by investors at a point in time compared 
to uncertainty in the whole sample period. Figure 1 shows volatility clustering, where periods 
of high volatility tend to be followed by periods of even higher volatility, and vice versa for 
periods of low volatility. Figure 1 also shows that volatility tends to be mean reverting 
around its long-run unconditional mean. Accordingly, a shock to volatility will tend to taper 
off, with a half-life of a few weeks. Filtered volatility is also summarized by boxplots (Figure 
2).‘l The filtered distributions exhibit a large number of outliers which reflect frequent 
sizeable changes in volatility. These outliers could be attributed to major market news that 
cause significant portfolio adjustment. 

C. Diagnostics 

In econometric analysis, diagnostic checks are required to assess the adequacy of the model 
and how well the fitted model accords with the observed data. If the model is invalid, then it 
can yield false inference; for this reason model checking is crucial to statistical analysis. In 
ARMA(p,q) model, diagnostics calculate the autocorrelation function for the residuals of the 
estimated model and determine whether those residuals appear to be white noise. In Gaussian 
state space model, the disturbances E, and qt are normally distributed and serially 
independent with constant variances. The Kalman filter delivers innovations v, , which should 
be uncorrelated and have a mean square errorF, If the assumptions on the disturbances hold, 

Vt then the standardized one-step-forecast errors e, = - 
d- F ’ t=ly.....y 

T, are also normally 

distributed and serially independent with unit variance: These properties could be verified 
means of the following large-sample diagnostic tests: 

(i) Normality: the first four moments of the standardized forecast errors are given by 
1 T 

m, =- c T t=l 
e,, mq = $(et -m,)4 , q = 2,3,4. 

t-1 

Skewness and kurtosis are denoted by S and K, respectively, and are defined as: 

S=m, 
3 

J- 
; Kdf$- 

m2 m2 

bY 

21 A box plot reports the distribution of a variable in a condensed form. It shows the total 
range of a variable and the concentration in a central region, using the quartiles of the 
distribution, and the inter-quartile range (IQR). 
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and it can be shown that when the model assumptions are valid they are asymptotically 
6 24 

normally distributed as S - N(0, r), K - N(3, -). They can be combined as 
T 

N=7{S’.(w2 
6 

24 } which asymptotically has a chi-square with 2 degrees of freedom on 

the null hypothesis that the normality assumption is valid. Normality is also checked by the 
QQ plot which is a graphical display of ordered residuals against their theoretical quantiles. 
The 45 degree line is a reference line, the closer the residual plot to this line, the better the tit. 

(ii) Serial correlation: when the model fits the data, the standardized forecast errors are 
serially uncorrelated. A standard test statistic for serial correlation is based on the Box-Ljung 

statistic. This is given by &5(K) = T(T + 2)iL where 
I=] CT - j) 

r, = $ $’ (e, - m, )(e,-, - m, ) is the jth sample autocorrelation coefficient. 
2 t-1+1 

However, time series models, such as the SVM, which are nonlinear and non-normal, have 
residuals which are definitely not normal. Diagnostics require a Monte Carlo estimation of 
the forecast error distribution function and a transformation of this distribution into uniform 
and independent distributed random variables.22 Diagnostics on the forecast errors of the 
model are conducted by diagnostics on the transformed uniform random variables. Consider 
the one-step-ahead conditional predictive distribution function 
u t+l = G(yt+, I Yt 8 = PrOlt+l 5 Y”,, I J’-t = yt 4) 
The random variables { u,,, , t=1,2,3,. .}are called the forecast distribution transformed 
residuals. Then, yt will have a forecast distribution function G, t = 1,2,3.. .,T given by the 
SVM equation (1). Rosenblatt (1952) showed that the joint distribution of the data 
F(h~-.~YT 1 ‘> can be transformed into a uniform and independently distributed random 
variables {u~+~ } given by the conditional forecast distribution functions ut+, = G(y,+, 1 yt , 0) 
He pointed out that testing the sample of data y, ,....,yT is drawn from a population with 
distribution function F(y, ,. .,yT 10) is equivalent to testing the sample {u~+~ ) is taken from a 
population uniformly distributed on the T-dimensional hypercube. Based on Rosenblatt’s 
transformation, one can judge the adequacy of the fitted model by the serial correlation in the 
(u,+~ } and by the nature of the distributional shape of {u,,, } Let Nt+, = W’ (u~+~ ) , where @  
is the standard normal distribution mnction, Nt+, are called the normal forecast transformed 

22 The transformation of a cumulative distribution function F(x) into a uniform random 
variable U on (0,l) is given by the inverse transformation method (See Ross, 2000, pp. 590). 
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residuals with zero mean and unit variance. Smith (1985) showed that if the model is correct, 
the series (u,+~ } and {N,,, } will conform to respective series of independent uniform, U(O,l), 
and independent normal random variables, respectively. 

To show that ut+, = G(y,+, 1 yt ,8) is uniformly distributed on (0,l) under the correctness of 
the model, observe that u,,, lies in the interval (0,l). Furthermore, 

P&+, I a 1 yt ,e) = Pr(G(y,+, I yt ,e) 4 a I yt, 0) = Wx+, 5 G-’ (4 I yt, 0) = a 
which shows that u~+~ is uniform. Finally, u,+~, being a forecast error independent of yt , 
forms also an independent sequence. 

Now consider a simulation-based approach for estimating u~+~ Having designed a filtering 
algorithm, it is a simple matter to sample from the one-step-ahead prediction density 
function. By definition, the prediction density is: 

fO1t+l I r,, 0) = Jf (Y,,, I r,, k+, , af(k+, I y,, 4, et-v5 I ytg ew,+,4 , which can be 
sampled by the method of composition as follows . For each value h,“’ (j=l,...,M) from the 

filter, one samples h$ from h$ I h,“’ -N (p +@ (h,“’ - ,u , ai ).23 Based on these M draws on 

ht+, from the predictive density, one can estimate the probability that yt+, will be less than 

the forecast yf,, 

G(JJ",, Ir,,e)=Pr(y,+, ~y,‘,,iy,,e)~~E, =+&YY,, %3&W 
I-’ 

where Pr( y,,, I y;‘,, ( Y, , 0 ) is derived using the fact that yt+l I h:$, B is a normal distribution 

N(O,exp(h,‘il)). For each t=l,... ,T, under the null of a correctly specified model 

uy converges in distribution to an independent and identically distributed uniform random 
variable as A4 + 00. This provides a valid basis for diagnostic checking. These variables can 
be mapped into the normal distribution, by using the inverse of the normal distribution 
Nf” = (I’-’ (ur) to give a standard sequence of independent and identically distributed 
normal variables, which are then transformed into one-step-ahead forecasts normed by their 
corrected standard errors. Under the null hypothesis that both the model and the prior are 
correct , NY are independent and standard normal withE(Ny ) = 0 and var(Nr ) = 1. 

The Nf” transforms are used to carry out the normality and Box-Ljung tests. 

23 Gerlach, Carter, and Kohn (1999), noting that the predictive distribution function included 
unknown latent variables that needed to be integrated out, suggested to compute the sequence 
(ut+, } using a combination of Markov Chain Monte Carlo and importance sampling. 
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Table 2 shows the results from some standard diagnostic checks on Nf” ,...., NY produced by 
the fitted model. Under the correctness of the model, the diagnostics should indicate that the 
variables are Gaussian white noise. 

The skewness statistic shows skewness to be small and kurtosis shows small positive kurtosis 
for the Dow Jones Industrial and small negative excess kurtosis for the FTSE 100 and the 
Nikkei 225. The joint normality test is highly significant indicating normally distributed 
transforms NY The Box-Ljung statistic shows absence of autocorrelation in the model’s 
residuals at all lags up to 30 lags for each market index. These diagnostics show that the 
SVM is adequate to fit the data on the three stock indices considered in this paper. The 
computed forecast uniforms {ut+, } and resulting correlograms and QQ plots are given in 
Figure 3. The graphical diagnostics show that the model performs quite well, although they 
reveal some outliers, and that there are no failures in the way the model has been fitted. 

V. CONCLUSION 

The stochastic volatility model has become a basic tool for pricing assets, hedging, and 
managing risks. SVM is a discrete-time approximation to diffusion asset pricing models. 
SVM focuses solely on market news and filters their instantaneous impact on time-varying 
variance. Contrary to ARCH-GARCH models, where volatility is influenced by past returns, 
SVM is interested only in market news and the information flows. While SVM’s news aspect 
makes it very appealing, complexity of its likelihood function, which could not be expressed 
in a closed form, is problematic. Simulation was a solution for estimating a SVM. In this 
paper, an MCMC simulation method was chosen for estimating the SVM for three market 
indices: the Dow Jones Industrial Average, the FTSE 100, and the Nikkei 225. In accordance 
with results for SVM, parameter estimates showed high volatility persistence, a tendency 
toward volatility mean reversion, and a good approximation of the information flow by the 
state transition equation. Boxplots of the filtered volatilities showed that frequent, important 
news kept hitting the market causing, high volatility in stock markets. Diagnostics checks 
were conducted and provided some evidence of the goodness of fit of the data by the SVM. 

The SVM has been shown, in the recent literature, to be flexible enough for modeling 
stylized features of financial time series. For instance, fat-tailed distributions could be 
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modeled in SVM by allowing for a Student-t distribution in the model’s disturbances. 
Leverage effects could be studied in the SVM via correlation in its disturbances. Different 
assumptions on the priors of the parameters could also be made. The observation equation 
could be specified to allow for covariates and for level effects. All these extensions indicate 
the wide-ranging flexibility of the SVM and its ability to adequately model time-varying 
volatility. 

Besides market participants, the SVM could have a potential value for the Ih4F and central 
banks as a tool for gauging market expectations and reactions to news, assessing monetary 
conditions and monetary policy, and influencing the timing and effectiveness of monetary 
operations and interventions. A better understanding of volatility in equity markets would 
support the @IF’s role in promoting international financial stability. Similarly, such 
understanding would enhance central banks’ ability to formulate and implement monetary 
policies capable of reducing asset price and interest rate volatility and influencing market 
expectations toward less volatile financial markets. 
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Figure 1. Filtered Volatilities and Absolute Returns for 
the Dow Jones Industrial Average (top), 

FTSE 100 (middle), and Nikkei 225 (bottom) 
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Figure 2. Boxplots: Dow Jones Industrial Average (left), 
FTSE 100 (middle), and Nikkei 225 (right). 
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Figure 3 : Diagnostics: Dow Jones Industrial (top), 
FTSE 100 (middle), and Nikkei 225 (bottom). 

Notes: In each panel, graphs are: (i) correlogram of y: (top left), (ii) the plot of the 
normalized innovations (top right), (iii) the correlogram of the normalized innovations 
(bottom let?), and (iv) the QQ-plot (bottom right). 



- 26 - 

References 

Black, F., 1976. Studies of stock price volatility changes. Proceedings of the American 
Statistical Association, Business and Economic Statistics Section, 177- 18 1. 

Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of 
Political Economy, 81, 637-654. 

Bollerslev, T., 1986. Generalized autoregressive conditional heteroscedasticity. Journal of 
Econometrics, 51, 307-327. 

Carlin, B. P., Polson, N.G., Stoffer, D.S., 1992. A Monte Carlo approach to nonnormal and 
nonlinear state spaced modeling. Journal of the American Statistical Association, 87, 
493-500. 

Carter, C.K., Kahn, R., 1994. On Gibbs sampling for state space models. Biometrika, 81, 
541-553. 

Chesney, M., Scott, L.O., 1989. Pricing European options: a comparison of the modified 
Black-Scholes model and a random variance model. Journal of Financial and 
Qualitative Analysis, 24, 267-284. 

Chib, S., 2001. Markovian chain Monte Carlo methods: computation and inference. In: 
Heckman, J.J., Learner, E. (Eds.), Handbook of Econometrics,Vol. 5, Elsevier 
Science B.V., pp 3569-3649. 

Chib, S., and Greenberg, E., 1994. Bayes inference for regression models with ARMA(p,q) 
errors. Journal of Econometrics, 64, 183-206. 

Chib, S., Nardari, F., Shephard, N., 2002. Markov Chain Monte Carlo methods for stochastic 
volatility models. Journal of Econometrics, 108, 28 l-3 16. 

Cox, J.C., Ingersoll, J. E., Ross, S.A., 1985. A theory of the term structure of interest rates. 
Econometrica, 53, 385-407. 

Dempster, A.P., Laird, N.M., Rubin, D., 1977. Maximum likelihood from incomplete data 
via the EM algorithm (with discussions). Journal of the Royal Statistical Society, 
Series B, 39, l-38. 

Engle, R.F., 1982. Autoregressive conditional heteroscedasticity with estimates of the 
variance of the United Kingdom inflation. Econometrica, 50, 987-l 007. 



- 27 - 

Fuller, W.A., 1996. Introduction to Time Series (2”’ ed), John Wiley, New York. 

Gerlach, R., Carter, C., Kohn, R., 1999. Diagnostics for time series analysis. Journal of Time 
Series Analysis, 20, 3, 309-330. 

Ghysels, E., Harvey, A. C., Renault E., 1996. Stochastic volatility. In: Maddala, G. S., Rao, 
C. R. (Eds.),Handbook of Statistics, Vol. 14, Elsevier Science, pp 119-191. 

Harvey, A.C., Ruiz, E., Shephard, N., 1994. Multivariate stochastic variance models. Review 
of Economic Studies, 6 1, 247-264. 

Hull, J., White, A., 1987. The Pricing of options on assets with stochastic volatilities. The 
Journal of Finance, Vol. XLII, No 2, 281-300. 

Jacquier, E., Polson, N.G., Rossi, P. E., 1994. Bayesian analysis of stochastic volatility 
models (with discussions). Journal of Business and Economic Statistics, 12, 37 l-4 17. 

Kim, S., Shephard, N., Chib, S., 1998. Stochastic volatility: Likelihood inference and 
comparison with ARCH models. Review of Economic Studies, 65, 361-393. 

Kitagawa, G., 1996. Monte Carlo filter and smoother for non-Gaussian nonlinear state space 
models. Journal of Computational and Graphical Statistics, 5, l-25. 

Ross, S., 2000. Introduction to Probability Models, Seventh Edition, Harcourt, Academic 
Press. 

Shephard, N., 1994. Partial non-Gaussian state space. Biometrika, 8 1, 115-l 3 1 

Shephard, N., 1996. Statistical aspects of ARCH and stochastic volatility. In: Cox, D.R., 
Hinkley, D.V., Bamdorff-Nielsen, O.E., (Eds.), Time Series Models in Econometrics, 
Finance, and Other Fields, Chapman & Hall, pp l-67. 

Shephard, N., and Pitt, M.K., 1999. Filtering via simulation: Auxiliary particle filters. Journal 
of the American Statistical Association, 94, 590-599. 

Smith, J.Q., 1985. Diagnostic checks of non-standard time series models. Journal of 
Forecasting, Vol. 4, 283-291. 

Rosenblatt, M., 1952. Remarks on a multivariate transformation. Annals of Mathematical 
Statistics, 23, 470-72. 



- 28 - 

Tanner, M. A., Wong, W.H., 1987. The calculation of posterior distributions by data 
augmentation (with discussions). Journal of the American Statistical Association, 
82, 528-550. 

Taylor, S.J., 1986. Modeling Financial Time Series. John Wiley, Chichester. 

Vasicek O., 1977. An equilibrium characterization of the term structure. Journal of 
Financial Economics, 5, 177-188. 


