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1. INTRODUCTION 

Vector auto-regressive models (VARs) are a useful starting point for econometric modeling and a 
standard benchmark for the analysis of dynamic economic problems. In the original formulation 
of Sims (1972 and 1980), VAR users should rely mostly on the data to study the interaction 
among the economic variables of interest in order to avoid imposing “incredible restrictions.” This 
approach, however, may create two problems that have been widely discussed in the literature 
over the last three decades or so. First, leaving the lag structure the VAR model unrestricted to 
avoid imposing the incredible restrictions of traditional simultaneous equation models may result 
in over-fitting: given their generous parameterization, VARs may suffer from a loss of degrees 
of freedom, which decrease geometrically with the number of variables and proportionally with 
the number of lags included, resulting in inefficient estimates. Second, by using reduced form 
VARs to avoid imposing identification restrictions on the contemporaneous causation among the 
variables of interest one may not go beyond a simple description of the data. 

This paper reviews the efforts spent over the past several years to address the overfitting problem 
by adopting a Bayesian approach to specification and estimation of VARs. The Bayesian approach 
to estimation regards the tie population structure as uncertain and does not assign too much 
“weight” on any particular value of the model parameters (e.g., zero-restrictions on certain 
coeficients). Instead, it takes this uncertainty into account in the form of a prior probability 
distribution over the model parameters. The degree of uncertainty represented by this prior 
distribution can then be altered by the information contained in the data, if the two sources of 
information are different. As long as the prior information is not too ‘vague’, it is altered only 
by the “signal” and not by the “noise” contained in the data sample, thus reducing the risk of 
overfitting. As a result, Bayesian VARs (BVARs) are known to produce better forecasts than 
reduced form VARs estimated in a classical way and, in some cases, even better than univariate 
autoregressive moving average processes or structural models.2 

The choice of a prior distribution summarizing the researcher’s uncertainty over the model 
parameters is a crucial step in specifying a BVAR. As pointed out by Learner (1978), for most 
inference problems in economics, prior information matters in the sense that two economists can 
legitimately make dQj%rent inferencesJ%om the same data set. In order to deal with this dependence 
of inference on prior information and to characterize the mapping from the set of alternative priors 
onto the corresponding inference, a method must be chosen to combine sample information with 
prior information, and a set of alternative priors must be considered. The Bayesian approach 
to estimation provides the needed method, while the range of alternative priors depends on the 
particular economic problem at hand. 

We review the Bayesian estimation principle in the specific case of VARs in Section II. In Section 
III, we review the most relevant prior distributions that have been proposed in the literature, from 
the original and easily computed “Minnesota prior” to the most recent and computationally more 
demanding assumptions. In Section IV, we discuss how to extend the basic model to deal with 

2 See Canova (1995) for specific references. 
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(i) time-varying coefficients, (ii) nonnormal data and (iii) nonlinear relations. In Section V, we 
discuss basic issues in forecasting and structural analysis with BVARs. In addition, in Section VI, 
by drawing on our own applied work (Ciccarelli and Rebucci, 2002), we present an application 
of these methods to the estimation of a system of monetary reaction functions for four European 
central banks under the European Monetary System. This application uses some of the results 
previously discussed and illustrates how flexible the Bayesian approach is. Section VII concludes. 

Our contribution, therefore, is to provide the reader with a road map to the general method and 
a few specific results that may be applied in a flexible manner for the empirical analysis of 
dynamic multivariate economic problems. The presentation in the paper reflects to some extent 
the broad chronological progress of research in this area, which in turn followed to some extent 
developments in computer technology permitting the estimation of increasingly more complex 
models at reasonable computing costs3 

Today’s appearance of an increasing number of Bayesian applications, in particular, seems 
linked to enhanced and cheaper computing power. As it will evident from the rest of the paper, 
with statistically and economically richer prior assumptions than the original Minnesota prior, 
integration problems become easily intractable analytically and must be solved numerically. But 
the difficulties of implementing numerical integration have been substantially reduced by the 
recent advances in computer technology and in sampling-based methods. Quoting from Hsiao 
and others. (1999) therefore, there is no excuse any longer for not considering Bayesian methods 
because ofpractical dijkulties. 

II. THE BASICS 

A. BVARs as an Answer to the Overfitting Problem 

Consider a typical VAR, 

yt = &K-l + BzK-2 + . . . + BPI& + Dxt + Et> t = 1, . . . . T 

where Yt is a n x 1 vector of endogenous variables and Et is a n x 1 vector of error terms 
independently, identically and normally distributed with variance-covariance matrix C, 
Et N IIN(0, C), B1 (I = 1, . . . . p) and D are n x n and n x d matrices of parameters respectively, 
and zt is a d x 1 vector of exogenous variables. 

Classical estimation of models like (1) may yield imprecisely estimated relations that fit the data 
well only because of the large number of variables included, a problem known as ‘overfitting’ in 
the literature. In fact, the number of parameters to be estimated, n (np + d), grows geometrically 
with the number of variables (n) and proportionally with the number of lags (p). When the 

3 Nonetheless, this survey does not provide specific indications on software implementation. The interested reader 
may consult Geweke (2000) for references to software freely available on tbe web for the implementation 
of some of the methods review in this paper. The application in Section VI of the paper has been implemented in RATS, 
which has a number of preprogrammed functions and procedures for Bayesian estimation of VARs. 
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number of variables on the right hand side of (1) is relatively high and the sample information 
is relatively loose, it is likely that the estimates are influenced by noise as opposed to signal, 
especially if the estimation method is designed to fit the sample data as closely as possible. When 
this is the case, it is recommendable to estimate models like (1) by imposing some restrictions to 
reduce the dimension of the parameter space. Therefore, the problem is to find restrictions that are 
as credible (in the sense of Sims, 1980) as possible. 

A Bayesian approach to VAR estimation was originally advocated by Litterman (1980) as a 
solution to the ‘over-fitting’ problem. The solution he proposed is to avoid overfitting without 
necessarily imposing exact zero restrictions on the coefficients. The researcher cannot be sure that 
some coefficients are zero and should not ignore their possible range of variation. A Bayesian 
perspective fits precisely this view. Without putting too much weight on certain values, one 
may think of this uncertainty over the exact value of the model’s parameters as a probability 
distribution for the parameter vector. The degree of uncertainty represented by this distribution 
can then be altered by the information contained in the data if the two sources of information are 
different. As long as theprior information is not too vague or non-informative, it should be altered 
only by the ‘signal’ and not by the ‘noise’ contained in the sample, thus reducing the overfitting 
risk. 

More specifically, Litterman (1986) specifies his prior by appealing to three statistical regularities 
of macroeconomic time series data: (i) the trending behavior typical of macroeconomic time 
series; (ii) the fact that more recent values of a series usually contain more information on the 
current value of the series than past values and (iii) the fact that past values of a given variable 
contain more information on its current state than past values of other variables. If we apply these 
statistical regularities, (1) becomes a multivariate random walk.4 A Bayesian researcher instead 
can specify these regularities by assigning a probability distribution to the parameters in such a 
way that: (i) the mean of the coefficients assigned to all lags other than the first one is equal to 
zero; (ii) the variance of the coefficients depends inversely on the number of lags; and (iii) the 
coefficients of variable j in equation g are assigned a lower prior variance than those of variable g. 

As we shall see below, these requirements can be expressed formally by introducing a vector 
of parameters (called hyperparameters), say II = (7r1, . . . 7rH). For instance, 7rl may control the 
value of the mean of the first own lag coefficient, 7r2 controls the variance of the lags of variable 
g in equation g, 7r3 controls the variance of the lags of variable j in equation g, 7r4 controls the 
speed of decreasing of the variance as the number of lags increase, 7r5 controls the variance of the 
deterministic/exogenous part, and 7r6 controls the overall degree of prior uncertainty. Therefore, 
the original problem of estimating n (np + d) parameters can be converted in a problem of 
estimating just six “hyper-parameters.” As we will see, this is only one example, although most 
BVARs were originally specified by using this particular set of hyperparameters. 

4 This specification has been criticized on the ground that the resulting estimation procedure might 
be affected by spurious regression problems as in the classical case, due to the presence of unit roots or stochastic trends 
in the data. Proponents of the Bayesian approach to VAR estimation, however, argue that this is 
not the case. See the special issue of the Journal ofApplied Econometrics (199 1, Vol. 6.) in which the Bayesian method 
of treating unit roots is thoroughly discussed, for a presentation of the arguments and the counterarguments. 
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Additional data characteristics can be easily accommodated by introducing different 
hyperparameters to control for other relevant information. Cointegrated systems, for instance, 
may be treated within the same framework by specifying, a priori, long-run relations among the 
variables of interest. As shown by Alvarez and Ballabriga (1994), however, a Minnesota-type 
prior with hyperparameters search performs well in the presence of cointegration. Alvarez and 
Ballabriga (1994) show also that adding long-run restrictions to the prior does not improve the 
small sample performance of the Bayesian estimation methods commonly applied to VAR models. 

B. Bayesian Estimation of VARs in a Nutshell 

To state more formally the Bayesian estimation principle, consider (1) rewritten in compact form 
aS: 

K = xtp + Et t = 1, . . ..T. (2) 

where X, = (In @  Wt-,) is n x nk, IV-, = (Y,‘-l, . . . . Y,l_,,z$)’ is k x 1, and 
/? = vec(&, BP, . . . . BP, 0) is nk x 1. The unknown parameters of the model are p and 
c. 

Bayesian estimation of (2) is simple, in principle, and works as follows. Given the probability 
density function (pdf) of the data conditional on the model’s parameters (the information 
contained in the data in the form of a likelihood function),’ 

L(Y 1 p,c> 0; ICJ-l”2exp -$(K -xtP>‘c-l(u, -XtP> ? 
1 t I 

and a joint prior distribution on the parameters, p (/I, C), the joint posterior distribution of the 
parameters conditional on the data is obtained through the Bayes rule, 

P(P,ClY) = 
P(/vw(Y I AC) 

P (Y> 

noting that, by definition of conditional probability, the joint pdf of the data and the parameters, 
p (8, C, Y), can be written as 

P(PJ>Y) = UY I%9P(PJ) 
= P(PJ I Y)P(Y) t 

where c( denotes ‘proportional to’. Given p (/I?, C I Y), the marginal posterior distributions 
conditional on the data, p (C ( Y) and p (p 1 Y), can then be obtained by integrating out ,f? and C 
from p (0, C ( Y), respectively. Finally, location and dispersion of p (C ( Y) and p (0 I Y) can be 
easily analyzed to yield point estimates of the parameters of interest and measures of precision, 
comparable to those obtained by using a classical approach to estimation. 

We shall denote probability density functions with a ‘p’ when they are prior or posterior 
distributions of the parameters, and with a ‘L’ when a likelihood function. 
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C. A Monte Carlo Simulation Method for Numerical Integration: The Gibbs Sampler 

In many applications, the analytical integration ofp (p, C ( 3) may be difficult or even impossible 
to implement. This problem, however, can often be solved by using numerical integration based 
on Monte Carlo simulation methods. 

One particular method used in the literature to solve similar estimation problems to those 
discussed in this paper is the Gibbs sampler.6 The Gibbs sampler is a recursive Monte Carlo 
method which requires only knowledge of the full conditional posterior distribution of the 
parameters of interest, p (/3 1 C, y) and p (C I /?, y). Suppose C and ,0 are scalars and that the 
conditional posterior distributions p (C I ,8,1~) and p (p 1 C, y) are known. Then the Gibbs sampler 
starts from arbitrary values for ,/3 (‘1 and .X(O) and samples alternately from the density of each 
element of the parameter vector, conditional’on the values of the other element sampled in the 
previous iteration and the data. Thus, the Gibbs sampler samples recursively as follows: 

p(l) from p (/3 1 Ido), y) 

9) from p (C I p(l), y) 

/!I(21 from p (a 1 C(l), .y> 

C(‘) from p (C I pc2), y) 

/?cm) from p (p 1 C(“-l), y) 

C(“) from p C I ljcm), y 
( > 

and so on. 

The vectors 8(m) = 
( 

/?(m), C(“) 
> 

f orm a Markov chain, and, for a sufficiently large number of 
iterations (say m 2 AJ), can be regarded as draws from the true joint posterior distribution. Given 
a large sample of draws from this limiting distribution, any posterior moment or marginal density 
of interest can then be easily estimated consistently with its corresponding sample average. 

III. ALTERNATIVE PRIOR DISTRIBUTIONS 

A second problem in implementing Bayesian estimation of (2) is the choice of a prior distribution 
for the model’s parameters, p (6, C). This choice is a fundamental step in the specification of the 
model. This section discusses several alternatives. 

Many priors have been proposed in the literature, according to the specific economic problem, 
the sample data, and the way the parameters of the prior p (p, C) are determined. These, 

6 See Gelfand and others (1990) for a detailed discussion of the Gibbs sampler and Canova 
and Ciccarelli (2000), Ciccarelli and Rebucci (2001) and Hsiao and others (1999), among others, for some applications. 
The brief summary in the text is borrowed fi-om this latter contribution. For a more general 
discussion of numerical Bayesian methods see also Geweke (2000) and Gelman and others (1995). 
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however, share common features. Full Bayesian estimation of (2) would require specifying a 
prior distribution also for the parameters of the prior p (p, C) and then integrating them out of the 
posterior distributions, p (!?I, C 1 Y) . As noted, however, these integrations may be complicated 
or even impossible to implement. In addition, the specification of the prior must take some 
hyperparameters as given, eventually. The discussion of alternative priors, therefore, may be 
organized according to the way the problem of the dependence of the posterior moments on the 
unknown hyperparameters is solved. 

One solution is to substitute estimates of the hyperparameters directly into the formulas for the 
mean and variance of the posterior distributions of the parameters of interest, sometime called 
Empirical Bayesian Estimation, These could be obtained in a previous stage by OLS, maximum 
likelihood, GMM, and other optimization criteria or informal methods such as the rules of thumb 
discussed above. Since uncertainty in the estimation of the hyperparameters is not accounted 
for by the substitution, the empirical Bayes approach will be only an approximation to the full 
Bayes approach, possibly approaching it in the limit, depending upon the statistical properties of 
the estimators used or the quality of the rules of thumb used. An empirical Bayesian estimate, 
may converge to a full Bayesian estimate if the estimator of the hyperparameters converges to its 
true value as the sample size increases. An alternative solution, sometime called Hierarchical 
Bayesian Estimation in the literature, is to incorporate into the model the prior distribution of the 
hyperparameters and then obtain the marginal densities of the parameters of interest by integrating 
out the hyperparameters from the joint posterior density numerically. 

We are now going to discuss the empirical and the hierarchical Bayes approaches in turn. 

A. Empirical Bayes Estimation 

The Minnesota Prior 

While the number of possibilities for a linear regression model as (2) is vast, a commonly used 
prior in the Bayesian VAR literature is that proposed by Litterman (1986), sometime called a 
Minnesota prior. 

Consider the problem of estimating the (k x 1) vector p, containing the parameters of the gth 
equation of (2) when the variance of the error term (gi J is known. Litterman (1986) assumes 
that 

where By and 0, denote the prior mean and variance-covariance matrix of p,, respectively. The 
residual variance-covariance matrix, C, is assumed fixed and diagonal, C&IT. Stacking the time 
observation of the gth equation, (2) can be written as 

Yg = X& f Eg g s 1, . ..n.; 

where Yg and cg are T x 1 vectors, and X is the stacked version of Xt in (2). 
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Given the assumed independence of the error terms, the likelihood (3) is just the product of 
independent normal densities, 

L (Y 1 /3, C) 0; lgi,sIpT’2 exp -&- 
9:9 

(y, - xp,)’ (y, - x-i,)}. 

The posterior distribution of the parameters of interest, given by 

P (a, I y) = P (a,) L (Y I PI ~;,g> ! 

(5) 

is proportional to: 

IcT~,~ lpT'2 ICI, leTi exp 
r [ 

-; (P, - B,)' %y' (a, - a,> + g (5 - xp,)' (y, - m,)] } 
9,g 

1 1 
cc exp -- 

{ K 2 -p- (YiYg - 2Y’X/blg + p;x’xj9,) + /3;ng’“g - 2;?;n,1p, + %i=q’, 
9>9 )I) 

In fact, ioi,g lPr” and ) sl, I -T’2 are constants with respect to the integration for ps in the 
first proportionality statement above, while Y,‘Yg and 17$fi;rp, are constants in the second 
proportionality relation. Now, completing the square in the last exponential, we obtain 

p (4 1 Y> 0; exp {-i [ (,& - fig,Bg)‘fi,l (Pi - figbg)]} 

with 
fig = a, p,‘p, + cT;;xYJ ) 

and 
fig = (!a,’ + ~,~x’x)-‘. 

In other words, p (/?, I Y) = N (bg, fig), where once we know a;l, pg, and a;:, we can take a, 
as a point estimate. 

Several remarks are in order here. First, note that, given the assumptions made, there is prior and 
posterior independence between equations. This explains why the equations can be estimated 
separately. Second, as noted above, C is assumed fixed and diagonal here, with its diagonal 
elements obtained from the estimation of a set of univariate autoregressive models of order p, 
AR(p). Third, Bg and ng are unknown and specified in terms of few hyper-parameters. Finally, 
by assuming an infinite dispersion of the prior distribution around its mean (fill = 0)-i.e., 
by assuming a diffuse prior in the terminology used in the literature-the posterior mean of p, 
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becomes jg = (X’X)-’ X’Y,, which is the OLS estimator of /jg.7 

Litterman (1986) then assigns numerical values to the hyperparameters of the model on the 
presumption that most macroeconomic time series are well represented by random walk processes, 
as discussed in the previous section. Specifically, he assumes that II is a degenerate random 
variable on the assigned values with the following structure for the diagonal elements of fig: 

{ 

7rf37r2/za4 for the gti lagged endogenous variable 
uar (r;l,) = (7f67r3/Zn4) a,,,/aj;j for the j” lagged endogenous variable . 

T6r5gg:g for deterministic and exogenous variables 

Here, 7r6 controls the overall prior tightness (or uncertainty); rr2 controls the tightness of own lags, 
while 7ra controls the tightness of own lags relative to the tightness of lags of the other variables 
in the equation; 7r4 controls the lag-decay in the prior variance with I = 1, . . . . p denoting the 
variable’s lags; 7r5 controls the degree of uncertainty on the coefficients of the deterministic and/or 
exogenous variables in equation g, while the factors ggZg and gj,j measure the scale of fluctuations 
in variables g and j taking the unit of measure of different variables into account. Finally, the 
mean vector is specified as 139 = (0, . . . . 0, rrl, 0, ..O) , where 7rl is in the gth position and represents 
the prior mean of coefficient on the first lag of the endogenous variable in equation g.* 

Obviously, in order to provide a closer approximation to a full Bayesian estimation, these 
hyperparameters may be estimated consistently rather than being assigned arbitrary values. For 
instance, the pdf of the data (5) can be written in terms of II and then maximized-the approach 
that we shall take in our application reported in Section VI of the paper. 

The Diffuse Prior 

The two main features of the Minnesota prior, the posterior independence between equations and 
the fixed residual variance-covariance matrix, can be relaxed with the priors considered in this 
subsection and in the next one. In fact, it can be shown that (see Kadyiala and Karlsson, 1997), 
with the (diffuse) prior distribution 

p (p, C) 0; ICI++ ) 

the joint posterior distribution is given by 

where 
P (P I c, y> = N (iL,; c @ ww) (6) 

’ Thus, a diffuse prior may be interpreted as assigning zero probability weight to the prior 
information relative to the information contained in the data. 

’ Note that by allowing 7r6 to approach infinity the prior becomes diffuse, while if ~3 is 
set to zero, the prior defines a set of univariate AR(p) models. 
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p(CIY)=iW 
( 

(y-X&,)‘(Y-x&s ,T-k > 
) 1 

(7) 

with X (of dimensions T x k) and Y (of dimensions T x n) denoting the matrix version of Xt and 
yt respectively, B = [Bi, . . . . Bk, D’] ’ (of dimensions k x n), and iW (Q, 4) denoting an inverted 
Wishart distribution with scale matrix Q and degrees of freedom CJ.~ Further, integrating C out of 
the joint posterior distribution, the marginal posterior distribution of B (the matrix form of the 
parameter vector I?), p (B I Y), can be shown to be 

0; J(Y -xq’ (Y-Xi,, ) + (B-&,)1x’x(u-41~)~-T’2, 

which is a generalized t-Student distribution with scales Y - XBoL, I 
>( 

Y - X8,& 
> 

and X’X, 

mean B Ols, and degrees of freedom T - k (see Kadyiala and Karlsson, 1997, page 104).” 

Conjugate Prior Distributions 

A matematically convenient way of solving the main drawbacks of the Minnesota prior is to 
use a conjugate family of prior distributions. Conjugacy is the property by which the posterior 
distribution follows the same parametric form as the prior distribution.” In what follows we 
describe two possibilities, the Normal-Wishart and the Normal-Diffuse prior. 

The Normal-Wishart Prior To relax the assumption of a fixed and diagonal variance- 
covariance matrix of the residuals, a natural conjugate prior for normal data is the Normal-Wishart, 

PGI -q = N(i%=q 09 

p(C) = iw (C;“) (9) 
i.e., the unconditional prior distribution of ,f3 will be normal with prior mean and variance 
E (/3) = B and V (,0) = (a - n - 1)-l f: 8 fl, respectively, where Q denotes the degrees of 
freedom of the inverse-Wishart and satisfies Q > n + 1. 

Given this prior assumption, the posterior distribution is obtained as (e.g. Kadyiala and Karlsson, 

’ The Wishart distribution is the multivariate generalization of the gamma distribution.If W - W (Q, q), 
where I,t’ is of dimensions k x k, then its density is proportional to lIY1(4-k-1)‘2 x exp (-i tr (Q-l W)) On the other 
hand, if IV1 w W (Q, q), then W has the inverse-Wishart distribution. The inverse-Wishart is the conjugate prior 
distribution for the multivariate normal covariance matrix. More references for univariate and multivariate distributions 
and for sampling horn them are Zelhrer (1971, Appendix B) and Gelman et al (1995, Appendix A). 

lo This integration, however, can also be approximated numerically by first drawing C from 
the inverted Wishart (7), and then using these draws to simulate ,8 from (6). 

l1 Formally, conjugacy is defined as follows: if 3 is a class of sampling distributions p (y / O), and N 
is a class of prior distributions for 0, then the class N is conjugate for 3 if p (y 1 6’) E N 
for all p(. 1 0) E S and p (.) E N. Natural conjugate priors arise by taking N to be the 
set of all densities having the same functional form as the likelihood (Gelman et al. 1995). 
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1997, page 104) 

P(DI CY> = N(~J@$) 

p(C I Y) = iW(k,T+a) 

(10) 
(11) 

where 
fj III (Q-1 + x’q 

B II fi 
( 

(=-lB + X’XB 01.5 > 

and 

5 = B~lsX’Xijols f B’crlB f c 
f ( Y-x&s I >( 

Y - XBols 
> ( 

- B’ iI-1 + x’x) B. 

As before, integrating C out of the joint posterior, the marginal posterior distribution of B is 
a multivariate t-Student distribution, whose integration can be easily performed numerically 
(Kadiyala and Kat-lsson, 1997, page 104). 

Note that working with this prior, it is necessary to assume ,6’, 0, and 2 as known. However, a 
Minnesota-type of specification for these matrices could be adapted and used here. In practice, ,8 
is specified as dependent upon only one hyper-parameter that controls the mean of the first lag 
of the endogenous variable, fl is specified as a diagonal matrix according to the scheme given in 
the previous section, and the diagonal elements of c are set as a,, = (LI: - n - 1) sig with sgg 
estimated from univariate AR(p) models. Finally, the prior degrees of freedom, CV, must be chosen 
so as to ensure the existence of the prior variances of the regression parameters. 

The Normal-Diffuse Prior A slightly different prior, which in addition to allowing for 
non-diagonal residual variance-covariance matrix also avoids the Normal-Wishart kind of 
restrictions on the variance-covariance matrix of ,0, is the Normal-Diffuse prior firstly introduced 
by Zellner (1971). The key assumption made by Zellner here is prior independence between ,!? 
and C, where 

p(P) = N(/%fi), 
p(C) = pp+1)/2. 

The combination of these priors with the data yields the following marginal conditional 
distributions 

P(P I -Gy> = N(Afy) (12) 

(13) p (c-’ I /?,Y) = w (C-q 
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with 

P = cl (C’j3 + (c-l c3 X’X) j3,,) (14) 
iI = (Cl + (c-’ @ x1x)>-’ 
C= ( Y - x&s 

>( 
’ Y-Xi? ols) + (B - &,,)‘x~x (B - &J 

and where W 
( > 

c-l, T denotes the inverse of iW. 

Then the conditional posterior of ,8 can be integrated analytically to obtain the marginal, but 
the form of the latter is complicated in the sense that large differences between the information 
contained in the prior and the likelihood can cause the posterior to become bimodal, and thus the 
posterior mean to have low posterior probability (see, again, Kadyiala and Karlsson, 1997, page 
106). For this reason it is preferable to integrate numerically. 

B. Hierarchical Bayes Estimation 

A prior distribution for the hyper-parameters can be incorporated into the specification of the 
model in the context of the hierarchical version of Zellner’s SUR model, as recently proposed 
by Chib and Greenberg (1995). In general, this kind of specification does not provide a closed 
form solution for estimation, and full Bayesian estimation is approximated by using numerical 
integration methods. The hierarchical setup is relatively straightforward to work with in a 
simulation context and provides a great deal of flexibility in modeling as it increasingly more 
widespread application shows. 

Chib’s hierarchical SUR model is specified as follows: 

where the nk x 1 parameter vector /? is related to a m x 1 parameter vector 19, which in turn is 
modeled as a function of a T x 1 parameter vector p. If T 5 m. 5 nk, then the VAR parameters 
are projected onto progressively lower-dimensional spaces. The literature refers to (15), (16) and 
(17) as thefirst, second and third stage of the hierarchy, respectively. 

The following assumptions are made by Chib: (i) A.&,, M1, ,LL and D1 are known; (ii) the matrices 
C, D, are unknown; (iii) the errors are mutually independent across the hierarchy, implying that Yt 
is conditionally independent of 0, D,. As a result, the likelihood of the data, again, is proportional 
to: 
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The prior information can then be completed by assuming 

P (C-‘, Do’) = P (“-‘) P (D;‘) , 

withp(C-‘) = W(C,s) andp(D;l) = W(D,,p), h w ere all the hyperparameters are assumed 
known. For instance, they may set in accordance to the Minnesota prior as before or more simply 
be estimated form data. 

The posterior density of the parameters of interest v’, = (/?, C, 8, D,) is given by 

PM I y> 0; -w I /w>P(1/‘) 7 

where p (II,) is constructed from (16) and (17) (stages 2 and 3 of the hierarchy, respectively) and 
the prior distributions on the.parameters. The Gibbs sampler can then run cycling through the 
conditional posterior distributions (19)-(22) below, which are in standard form (see Chib and 
Greenberg, 1995): 

P I Cp; Y N iv (i’, 0) ; (19) 

c-l 1 f/-c, Y-W(&+T); 

0,’ 1 &I,> Y-W(D,;P+l); 

where 

j = fi D,%!.@ + ~X;E-‘y, 
t 

), i?= (D;l+~X;E-lXt)-l, 

[ 

-1 

2 = c-1 + 5 (yt - xtp> (yt - &P>’ 
’ 

t=1 1 
A, = (D,l + M;D,lMo)-l, 

1 
-1 

0, = D,l + 2 (p, - e) (p, - 6)' . 

g=l 

(20) 

(22) 

The number of stages in the hierarchy could be more or less than the three discussed here. In 
the case of more stages, we essentially have to add more conditional posterior distributions 
to the Gibbs sampler. In the case of less stages, as for instance in the case of the Minnesota 
prior discussed in the previous section, we have to fix somewhat arbitrarily the value of the 
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hyperparameters of the omitted stage. 

For example, the Minnesota prior-see equation (4) above+an be written as 

where & = M& e = (Til O)‘, and 

(23) 

with the ones of the first column and the zeros of the second referring to the gth row of the VAR. 
Therefore, the difference between the latter specification and the Chib’s three-stages hierarchy is 
that Q and fig are either estimated or assumed to be known based on the Minnesota rules of thumb, 
while we give a proper prior on the hyper-parameters of the model in the three-stages hierarchy. 
Obviously, the hierarchical model is closer to a full Bayesian model than an empirical Bayesian 
one in the sense that it incorporates a more general prior assumption for the hyper-parameters. 

IV. SOME EXTENSIONS 

In this section we consider a few useful extensions of the models discussed thus far In particular, 
we shall discuss models with time-varying coefficients (TVC), which have been shown to capture 
both nonlinearities and nonnormalities in the data, an alternative to the normal data model that 
captures outliers (or fat-tails) in the distribution of the error terms, and briefly touch upon regime 
switching models. The first two extensions are relevant for modeling financial data. The latter 
is more of interest in macroeconomic applications. The models discussed in this section clearly 
illustrate the flexibility of a Bayesian approach to estimation, which allows complicated estimation 
problems to be handled in a fairly simple way. 

A. Time-Varying Coefficients 

The Kalman Filter with a Minnesota Prior 

A standard tool for the estimation of linear regression models with time-varying parameters is the 
Kalman Filter. The Kalman Filter is an algorithm for recursively updating a linear projection for 
a dynamic system represented in state-space form, given a set of initial values on the parameters 
describing its status.12 An empirical Bayesian procedure for the estimation of a time-varying 
version of (2) equation-by-equation, with known variance-covariance matrix of the residuals as 
discussed in Section IILA, has been developed by Doan et al. (1984). Doan et al. suggest to 

See Hamilton (1994, Chapter 13) for more details on the Kalman Filter. 
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specify the law of motion of /It as a first order autoregressive process represented in state-space 
form and to give a Minnesota-type prior on Ptel, so that the Kalman Filter can be applied to 
update it for all t, recursively. 

Consider the problem of estimating the entire parameter vector of (2) when this changes over time 
in all periods t (thus, we want to obtain a sequence of posterior distributions for PI, ,/&,...,,&), and 
assume that /?, follows a stationary VAR process of order one, such as: 

Pt = A&, + rlt rlt I It-1 N iv (0, @) > (24) 

where 

with ptPl, Q, and vt independently distributed. Here, C: A, and @  are assumed to be known, 
and It-l denotes the information available at time t - 1. Thus, we are considering the following 
specification for (2): 

yt = XtPtf% Et 1 It--l N N (0; C> ; (25) 

Pt = -W-1+ rlt> 77t I It-1 N N (0, @) ; 
Pt-1 I It-1 N iv (pt-l,t-l, %llt-l) . 

Note that, conditional on ItPI, the prior distribution of /3, is 

lot I It-1 N iv @q-l! q-1) ? 

where 
a;,,-, = Ai$-l,tel and f+ = A%l,t-4 + @. 

Substituting for pt in the first line of (25) we obtain a state space model for pt with observation 
equation given by 

Yt = Xt/q1 + XtQ + Et. 

Now, it is possible to show (e.g., Ballabriga et al., 1998) that, under these assumptions, the 
marginal posterior distribution of j?, is given by: 

where ptit and $, are the one-period-ahead forecast of pt and the variance-covariance matrix of 
its mean square error, respectively, calculated by the Kalman Filter as: 

P tit = /q-l + $lXlF, (yt - mq-1) 

qt = q-1 - qtJQtm;,t-1 

Ft = (xtn;l,~,x; + q-’ . (26) 

To make this scheme operational, one needs a consistent estimate of C, values for the hyper- 
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parameters of the model (A and Q), and initial values for the elements of 0110 and ,filiO. AS we 
saw in the time-invariant case discussed in the previous section, these may be obtained in many 
different ways.13 

A Hierarchical Time-Varying SUR model 

Parameter time-variation may be specified also in the context of the hierarchical framework 
proposed by Chib and Greenberg (1995), based on an important result previously obtained by 
Carter and Kohn (1994) by adding one stage to the hierarchy implicit in the model discussed in 
the previous section.14 

In this case, parameter time-variation is specified as follows: 

yt = XtP, + Et, Et N IIN, (0, C) 

6 = et-1 + vt> qt N Nn (0, 01) > (28) 

where Et, ct, and rlt are assumed to be independent. Compared to the model in section 3.2, it is 
now 0 = Bt, ,u = OtWl and Ml = I. Then, the law of motion of & is specified as a random walk 
without drift, but could be an AR( 1). By substituting (28) in (27) and rearranging the resulting 
expression we have: 

Pt = Pt-1 + ut 

with 
Vt = MJjt + 5t - <t-L 

which has the same structure as (24) except that the error term now contains a moving average 
component of the first order, MA( 1). 

Assuming that BO and D1 are known and conditioning on {6J,}~=,, the conditional posterior 
distribution of the remaining parameters can be easily derived. For instance, conditional on 
(et}&, ,B, N N (AL&,&, DO), and its conditional posterior is obtained by combining this prior 
with the likelihood (18). Proceeding in this way, the following conditional distributions can be 
obtained: 

(29) 

l3 We apply this model to the estimation of a system of reaction functions for four European 
central banks under the EMS. See also Ballabriga et al. (1998) for a detailed presentation of the methodology. 

I4 See Canova and Ciccarelli (2000) and Ciccarelli and Rebucci (2002) for applications 
of this procedure to the prediction of turning points in the business cycle of G7 countries 
and to the analysis of the transmission mechanism of European monetary policy, respectively. 
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x-l I $L&/ N vv(i;s+T) ; 

D,l I g-o,, Y N w (&pi-T); 

(30) 

(3 1) 

where 
j?, = fit (D,‘MoQt + X,/C-‘y,) , 6, = (Do’ + X;C?Xt)-l, 

[ 

-1 

c = C-l + f: (yt - xtp> (yt - &P>’ I 

t=1 1 
0, = 

[ 

D,l + 5 (l3, - MO&) (Pt - Kb)’ 1 
-1 

. 

t=1 

The joint posterior distribution of { 0,) conditional on the remaining parameters and the data can 
then be obtained in two steps as shown by Chib and Greenberg (1995, pp. 349-350). First, by 

n T 

initializing (0,) I Y, y’iPs with the Kalman Filter, whose output 1 
&It, Rtlt, Ft > 

is saved for each 
t=o 

t: 
,. 

- etlt - et,,-, + Kt (R, - M&l) , 

Rtjt = (I- JWL) Q-1 

Ft = Rt,tR&, 

where 

~t,t-1 = at-1,111 

Q-1 = Rt-lit-1 + Dl, 

rtlt-1 = W$-& + Do, 

Kt = Rt,t-M&;-,- 

And second, by sampling p( (0,) I Y, Y’/Q) in reverse time order from 

( 
^ 

eT N N eTIT, RTIT 
> 

QT-1 N 
> 

(33) 

0, N N $0, Ro , ( > 
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where 

et = et,, + Ft ( ettl - et,, 1 
Rt = Rtjt - Ft&+&,‘. 

Note that with this algorithm, we simulate (0,) from the joint distribution p(B,, 81, . . . . t?T 1 qk,), 

rather than from its full conditional distribution Bt ) QJ!)-~. The latter simulation strategy produces 
very slow convergence to the ergodic distribution because it requires adding 7’ + 1 additional 
blocks to the Gibbs sampler, a problem exacerbated as the dimension of Qt increases. In the former 
case, instead, only one additional block is introduced in the sampler. 

B. Nonnormal Data 

The Bayesian framework discussed thus far can be easily adapted to take into account the 
presence of outliers, or to model data coming form distributions with higher probability of 
extreme observations than under the normal distribution-sometime called fat-tailed distributions 
in the empirical finance literature. Being able to accommodate outliers or fat-tails is particularly 
important in financial applications dealing with high frequency data, which are well known to 
depart form normality. 

In a Bayesian framework, the presence of outliers can be accommodated by replacing the normal 
data model usually assumed by a fatter-tailed family of distributions for the error term and thus 
the data, such as the t-student, or by using mixture models.” A nonnormal data specification can 
then be combined with alternative prior assumptions for the parameters of interest to obtain their 
posterior distributions along the line discussed thus far. 

Unlike the classical analysis of outliers, the Bayesian analysis makes no distinction between 
methods that search for outliers-possibly removing them from the analysis-and robust 
estimation procedures that are not vulnerable to their presence. Bayesian researchers characterize 
outliers as observations coming form fat-tailed distributions, or high-variance periods in the 
context of mixture models of time series, rather than extreme observations from a normal 
distribution. As a result, these observations do not distort the point estimates of the population 
moments. In addition, such a modeling approach is compatible with many of the prior 
distributions for the parameters of interest seen in the previous sections, including the possibility 
of time-variation. 

TO present these ideas more formally, consider the same hierarchical model discussed in Section 
III.B, generalized to allow for fat-tails in the data as described by a t-student distribution for the 

l5 Mixture models are statistical model based on the combination of two or more distributions. 
They are frequently used in situations in which the measurement of a random variable is 
taken under two or more conditions, or where the population is known or assumed to consist 
of subpopulations that follow a different, simpler model. For more details see, for instance, Gelman et al. (19%). 
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vector of error terms: 

yt = Xt,D+Et, Et N tv (0, -q (34) 
p = fkce + 5, S N Nn,.k: (0; Do) (35) 

0 = M~P+$-, q N Nn (0, 01) (36) 

where t, (,u, a”) denotes a t-student distribution with location p, scale 0, and degrees of freedom 
u, v E (0, oo), determining the shape of the distribution.16 

As for the estimation of the model, the new specification requires only a small modification to 
what discussed in Section 1II.B. Specifically, the prior (37)-(38) in footnote must be added to 
the hierarchical scheme (34)-(36) and the conditional distribution of gt must be added to the 
Gibbs sampler. It is not difficult to show that, assuming v is fixed, the conditional distributions 
becomes: 

c-l 1 1/.‘-p Y~CV(~,s+T); 

x1 I b,> Y--W(D,:p+l); 

ot ) &,,, Y - Inv-x” (V + T, s”) 

where 

a=fi D,lMoe+~x;(atc)-l~ 
( ) 

, fj= 
t 

l6 The t-student distribution can be interpreted as mixture model, i.e., a mixture of normal 
distributions with a common mean and time-varying variance (in the case of a time series 
regression) distributed as scaled inverse cm-squared distribution. For instance, 

is equivalent to 

Et - N(O,gtq (37) 
ut - Inv-x2 (v, 1). (38) 

-1 
xt 

(39) 

(40) 

(41) 

(42) 

(43) 

Statistically, therefore, outliers may be interpreted as observations drawn from a distribution with 
higher variance. Hence, the variance of the error term is heteroschedastic and the degree of heteroschedasticity depends 
on the number of degrees of freedom V. In fact, as I/ approaches infinity, cCt converges in 
distribution to N (0, C), as E (ot) tends to one and V (nt) tends to zero. 
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A, = (UT’ + M;D,‘Mo)-l , 

[ 1 
-1 ai, = 0~1 + 5 (p, - 8) (13, - e)' 

g=l 

with 
s2 = [u + (yt - xtp) P (Yt - XtP)] lv. 

denoting the scale of the scaled inverse chi squared. 

In practice, if the t-student aims at fitting a long-tailed distribution on a long series of observations, 
then it is generally appropriate to include the degrees of freedom as an unknown parameter to be 
estimated. If instead the t-student specification is chosen as a robust alternative to the normal to 
control for outliers, then u can be fixed at an arbitrarily small value, but no smaller than prior 
understanding dictates (see Gelman et al., 1995, page 350 for more details on this).” 

C. Regime Switching, Nonlinear Models, and Beyond 

Regime-switching time series models are a popular device to model non-linear dynamic, following 
the seminal contribution of Hamilton (1989). Shifts between two or more regimes can be easily 
accommodated in the Bayesian framework discussed thus far.‘* Canova (1993), however, has 
shown that nonlinearities, nonnormalities and conditional heteroschedasticity may also be 
modelled by a the kind of time-varying coefficient models (TVCs) discussed above. In particular, 
he shows that a TVC model nests specifications generally used to characterize typical departures 
from standard assumptions such as conditionally normal ARCH and ARCH-M models, or even 
Hamilton’s regime switching effects. Interestingly, as we have seen in the previous subsections, a 
TVC specification is rather easily estimated in a Bayesian framework. 

The flexibility of the Bayesian approach does not end here and the modeling possibilities are 
numerous. For instance, it is possible to specie a t-student prior for the parameters rather than 
the error terms, thereby allowing for outliers in the parameters, while continuing to use a normal 
data model. Sometimes, it is difficult to justify a priori the normality of the parameter vector, 
especially if the VAR includes equations referring to different decision units, as in the case of a 
panel VAR. Moreover, posterior inference is generally sensitive to the assumed prior, even when 
the model fits the data well. For this reason, it may be useful to check robustness by assuming 

I7 See Ciccarelli and Rebucci (2002) for an application of a non-normal, TVC model to 
the measurement of financial contagion. Similar models have been used by Sims (1999) 
and Cogley and Sargent (2002) to study monetary policy issues. 

” See Kim (1994) and Chib et al. (2001a) for univariate applications and Chib et al. (2001b) 
and Cogley and Sargent (2002), among others, for multivariate applications. 
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alternative specifications for the prior distribution of the parameter vector, such as a t-student as 
we discussed for the error terms. 

Assume for instance that in (34)-(36) we change the assumption on the population structure as 

P I 6 y, Do N t, (Ju4 Do) . 

As in previous subsection, the t-distribution can be written as a mixture of a normal and a scaled 
inverse-x2 as 

D I QQo N N (W, 78) (44) 

7 N Inv-x2 (v, 1) . (45) 

The conditional posterior of r is then added to the Gibbs sampler as we added the conditional 
posterior of crt in the previous section. 

V. FORECASTINGANDSTRUCTURALANALYSIS 

In order to compute out of sample forecasts, impulse response functions (IRFs) and forecast error 
variance decompositions (FVDs), take the companion form of model (1) with no deterministic 
components but the constant: 

Yt = p + BY,wl + Ut, (46) 

where 

yt x-1 yt= . 1. 1 r k-p-l 
B = 

(npxl) 

B1 B2 . . . 
I, 0 *-. 
0 In 

P 
0 p= . I.1 , b 

(npxl) 

&t 
0 u-t = II- b 

(npxl) 

Solving forward from period T, we can express the h-step ahead out-of-sample forecast at time T 
i.iS: 

h-l h-l 

Y - T+h - C Bip + BhYT + C BiUT-h-j h = 1,2, . . . . (47) 
j=o j=O 

Now, defining the n x np matrix J = [I, 0 . . . 0] as in Ltitkepohl(l990, page 13) and using the 
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fact that J’JUt = Ut and that Jut = Et, we obtain the h-step ahead, out-of-sample forecast of 
YT-h : 

h-l 

where Co = 1, Ci = I + xi=, BiC2-j (i = 1,2, . . . ), Bj = 0 for j > p, and Qj = JBi J’. 

Forecasting (conditional and unconditional), impulse response and variance decomposition 
analysis are natural application of (48), where the first two terms add up to the expected value of 
YTTh (i.e., YT (h) = CFL-lp + JBhYT = E [YT+h 1 YT, p, C]), while the last term is the forecast 
error (YT-h - YT (h)) with conditional variance equal to c;li <Pjc@>. 

A. Unconditional Forecasting 

There are two different ways to forecast f&ure realizations of the vector of variables of interest. 
If there are conditions or constraints on the future value of the variables or the shocks driving the 
model, the forecast produced by means of (48) is conditional; if there are no such conditions, it is 
an unconditionalforecast. Here, we focus only on unconditional forecasfs.” 

The unconditional forecasting function (Yr (h)) is given by the first two terms in (48), 

YT (h) = ch-lp + JBhYT. (49) 

Some algebra manipulations show that the h-step ahead forecasting function may also be written, 
recursively, as 

YT (h) = p + BIYT (h - 1) + . . . + B,YT (h -p) (50) 

where YT (j) = Yt+j for j 2 0. Pointforecasts may now be computed in two ways. 

First, by substituting in equation (50) estimates of p and B1 (I = 1, ..,p) obtained from the mean 
of the posterior distribution of ,L?: 

r;;, (h) = fi + i,,?, (h - 1) + . . . + B,?T (h - p) . 

Alternatively, by defining 6 = (p, C) and evaluating the integral 

(51) 

?; (h) = J Y- (h) * p (6 1 Y) d6, (52) 

where p (6 1 Y) denotes the posterior distribution of 6 and the forecasting function is averaged by 
taking as weights the whole posterior density of the parameters and not just their posterior mean 
as in (51). 

If instead one is interested in forecasting the whole density of Yt (h) and not one just “one 

lg On conditional forecasting see, among others, Waggoner and Zha (1998). Kadyiala and 
Karlsson (1997) evaluate the forecasting performance of most of the specifications discussed in the previous section. 
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point”, i.e., one is interested in density forecasts, the following integral may be evaluated either 
analytically or numerically by means of Gibbs sampler:2o 

The procedure is relatively simple. For each draw of &I, we draw Y,(j) (h) from 
p (K (h) 1 YT, Go)), Aft er, say, M iterations of the Gibbs sampler these draws may be 
regarded as draws from p (Yt (h) 1 YT). A point forecast can then be obtained using the ergodic 
mean of the empirical distribution. 

B. Structural Analysis 

Computation of unconditional forecasts is related to the calculation of IRFs and FVDs. But while 
the reduced form is all we need for unconditional forecasting, structural VAR analysis requires the 
solution of a joint estimation-identification problem. However, if the system is exactly identified, 
the analysis remains relatively simple.21 

For instance, take the model with time-invariant parameters and any of the prior assumptions 
discussed above. Any such model may be seen as the reduced form of the a structural form in 
which: 

C-l = A’A, 

where A is an n x n non-singular matrix of contemporaneous correlations, ~~ = A-‘ut, 
and wt is assumed normally and independently distributed with E [z+ 1 Yt-,, s > 0] = 0 and 
E [ZW~ ) Yt-,, s > 0] = I, for all t. Equation (48) can then be re-written as 

h-l 

YT-h = flT+h = ch-lp f JBhY~ f c *IljuTLh-j 
j=o 

(53) 

where the n x n matrix Q,j = QjA-l is the matrix of the j*-period-ahead impulse responses, 
while the forecast error variance is then given by Ciii QjQ$ = CF=“=l Ctzi (aja,aiQ> where ai 
is the i-th column of A-l. 

Probability distributions of the responses to an impulse in the k-th structural shock may be 
computed by making random draws for the k-th column of Qj for periods j = 0, .., h, as explained 
for unconditional forecasting. The mean response and the percentiles are then used to summarize 
the posterior distribution of these statistics. Similarly a distribution for the contribution of the i-th 
innovation to the forecast error variance of the h-step ahead forecast can be obtained by making 

” Density forecast is of great help when the researcher wants to compute turning point 
probabilities, for instance, as in Canova and Ciccarelli (200 1). 

21 See Am&no and Giannini (1997) on the general issue of identification in VA&. For 
a more complete Bayesian treatment of the calculation of impulse response functions in structural VAR models 
see Koop (1992). For the case of over-identification in a Bayesian framework see Zha (1999) and Sims and Zha (1998). 
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draws of CIIt @ ‘jq4@i as a proportion of the total forecast error variance. 

In the case of overidentification, the mapping between C-l and A is not one-to-one. This means 
that we cannot obtain the posterior distribution of A while computing the posterior distribution of 
C, given the chosen identifying scheme. In case of overidentification, as explained in Sims and 
Zha (1998), a joint prior distribution on the parameters governing contemporaneous and lagged 
interdependence between the variables of interest must be specified, and the posterior distribution 
of the parameters governing contemporaneous correlations becomes nonstandard. In this case, 
one needs to take a second-order Taylor expansion around the maximum of the likelihood to 
obtain the posterior distribution of these parameters.22 

VI. AN APPLICATION: ESTIMATING A SYSTEM OF REACTION FUNCTIONS 

In this section, by drawing on the work reported by Ciccarelli and Rebucci (2002), we apply some 
of the results previously reviewed to the estimation of a system of monetary reaction functions of 
the type discussed and estimated by Clarida, Gali, and Gertler (1997). 

Researchers estimate central bank reaction functions either to investigate the behavior of the 
monetary authorities or to obtain measures of the expected and unexpected component of 
monetary policy. In the empirical monetary policy literature, examples of use of estimated 
reaction functions for both purposes abound. For instance, in a seminal contribution, Clarida and 
others (1997) estimate the reaction function of the largest advanced economies’ central banks to 
compare their behavior; Dornbusch and others (1998) estimate a system of reaction tin&ions for 
European central banks to compare the transmission mechanism of monetary policy across these 
countries; Sims (1999) and Sargent and Cogley (2002) revisit the U.S. postwar monetary policy 
history by estimating a reaction function for the US Federal Reserve with methods similar to those 
reviewed in this paper; finally, Ciccarelli and Rebucci (2002) use the system of reaction functions 
presented in this section to investigate how the transmission mechanism of European monetary 
policy has changed over time. 

More specifically, we consider four central banks in the European Monetary System (EMS)- 
Germany, France, Italy, and Spain-which are the four largest economies currently in the 
European Monetary Union (EMU), accounting for about 80 percent of the euro-area GDP.23 As 
these countries’ commitment to the EMS, and hence their monetary policy regime, has changed 
over time, we let also the model parameters change over time. In addition, as short-term interest 
rates may reflect not only monetary policy actions and surprises but also exogenous shocks to 
exchange rate risk premia and money demand shocks not fully accommodated by the money 
supply, we assume that the error terms are t-distributed. 

Therefore, we estimate a time-varying coefficient system for nonnormal data by adapting the 

22 See Zha (1999, page 300) for details. 

2.7 There is nothing in our empirical fbmework that would prevent us to include more than 
four countries except additional computing costs. 
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models discussed in Sections 1V.A and VI.B. Specification, identification and estimation of the 
particular econometric model used are presented in the first three subsections. The estimation 
results are reported and discussed in the following one. 

A. Specification 

The behavior of the four European central banks considered is modeled by the following 
time-varying structural VAR: 

At (L) Rt = Bt (L) wt + Dt + Ut, (54) 

where Rt = [rt,..- , rt]’ is a (4 x 1) vector of monetary policy instruments, W, = [z$, . . . , $1’ 
is a (4 x 1) vector of monetary policy final objectives and exogenous variables, At (L) and Bt (L) 
are time-varying polynomial matrices in the lag operator L, with lag length pl and p2 respectively, 
and Dt is a (4 x 1) vector of constants. Here, Ut = [ui, . . . , u:]’ is a (4 x 1) vector of monetary 
policy shocks such that: 

E [Ut 1 Zt-, ] = 0, for all t and s > 0; 
E [UJI~ / &,I = I, for all t and s > 0; 

E [U&$] = 0, for all t f s, 

(55) 

where 2, contains lagged Rt and contemporaneous and lagged r/v,, and E denotes the expectation 
operator and that. 

A short-term interest rate is assumed to be the monetary policy instrument. Consistent with the 
specification of a standard VAR for the analysis of monetary policy in open economy, in wit 
we include contemporaneous and lagged inflation (r), output (y), and lagged nominal exchange 
rate (e) in percent deviation from its target (x-*, y*, e*, respectively). In addition, we include a 
contemporaneous and lagged index of commodity prices (cp), the U.S. federal fund’s rate (ryS) 
and the lagged value of a broad monetary aggregate (m.). Commodity prices and the US money 
market rate are included to control for external shocks, while monetary aggregates are widely 
believed to have been monitored closely by most European central banks throughout the period 
considered. Thus, 

Wit = [(ri,t - $7, (yi!t - y’), (eit-l - ez), msi,t-l, cpt, T-F’]’ for i = 1, . ..4. 

All data used are from the International Financial Statistics database of the IMF. AS a proxy for 
the short-term interest rate, following Bernanke and Mihov (1997) and Clarida, Gali, and Gertler 
(1997), we use the money market rate. Output is measured by an industrial production index. 
Inflation is measured by the annual change in the consumer price index. We use the bilateral 
exchange rate vis-a-vis the deutsche mark (DM) for France, Italy, and Spain, and the DMKJ.S. 
dollar rate for Germany. The commodity price index and the monetary aggregate are entered in 
first-difference. The monetary aggregate chosen is a seasonally adjusted M3 series.24 The targets 

24 All variables are transformed in natural logarithm so that estimated coefficients can be 
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variables K* and y* are the fitted values of a linear regression of the actual variables (7r+ and yi>t) 
on a constant and a linear trend and a constant and a quadratic trend, , respectively, while e* is the 
central parity vis-a-vis the DM.” 

The specification chosen imposes very few a priori restrictions on the system of reaction functions: 
all parameters in At (L) and Bt (L) are unrestricted and can vary over time, including those 
governing the contemporaneous causation among short-term interest rates.26 Leaving Bt (L) 
unrestricted allows the behavior of the central banks considered to change during the sample 
period, letting the data reveal which objectives they were actually pursuing in each period. For 
instance, the Spanish peseta joined the EMS only in 1989, the Italian lira has been floating more 
or less freely from September 1992 to November 1996, and the fluctuation bands of all three 
currencies vis-a-vis the DM have changed several times during the period considered. Even the 
Bundesbank’s focus might have shifted away from strictly domestic objectives, after the early 
years of the German unification, in the run up to the EMU. It is evident that, if the policy changes 
and possible outliers are not accounted for by the estimated parameters of the system of reaction 
functions, they will end up in the estimated residuals, thereby potentially undermining their 
interpretation of well behaved (i.e., white noise) policy innovations as assumed in (55). 

Leaving A, (L) unrestricted allows for lagged interdependence among short term interest rates 
of different countries as well as for varying degrees of interest rate smoothing over time. In 
addition, as we shall see below, our prior assumptions on the matrix of contemporaneous relations 
among the interest rates considered (i.e., the matrix A,(O)) allow for the possibility that there are 
exchange rate risk premium shocks and money demand shocks not fully accommodated by money 
supply possibly resulting in large outliers in Ut. 

Nonetheless, we do impose some lag-length restriction by choosing pl and p2 based on the 
Schwarz (BIC) criterium and ex post misspecification tests on the estimated residuals. While 
the BIC criterion suggests to set p r = 6 and p2 = 1, we find that our residuals pass all 
misspecifications tests using pl = 2 and p2 = 1 (see below). Therefore, to save computing time, 
the final results are based on the shorter fag structure. 

B. Identification 

Identification of (54) may be achieved through exclusion restrictions on the coefficient matrix 
At(O). The specific scheme used exploits the Bundesbank’s presumed leading role under the 

interpreted as elasticities. For interest rates we take the natural logarithm of the gross rates. 

25 The exchange rate gap for Italy and Spain is set to zero before the Spanish peseta joined 
the EMS and during the period in which the Italian lit-a was floating following the 1992 
ERM crisis. We compute the inflation and output target also by taking deviations horn the 
German imlation rate and by using the HP filter for the output series finding similar results available on request. 

26 Note however that the relative tightness of the prior distribution given on the elements of At(L) 
and Bt (L) distinguishes between own and other countries’ monetary policy instruments (the endogenous variables), 
between instruments and objectives and between own and other countries’ objectives (the exogenous variables). 
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EMS and the relative economic size of other countries.27 More specifically, we place the German 
short term interest rate first in the vector R,, assuming that it affects other European interest rates 
contemporaneously without being affected by them. We then assume that French and Italian 
interest rates affect contemporaneously the Spanish rate without being affected by it. This is 
plausible given that Spain’s GDP was considerably smaller than that of France and Italy during 
much of the period considered. (Spain also joined the EMS only in 1989.) Finally, we assume that 
the impact on France of an increase in interest rates in Italy is the same as the impact on Italy of 
an increase in French rates.28 

Formally, we need six restrictions on A,(O) to identify the model. The assumptions above provide 
the six restrictions that identify the model exactly and translate into the following block recursive 
structure for A, (0) : 

Al (0) 0 
A21 (0) A22 (0) :: 

I 
(56) 

A31(0) A32(0) A33 (0) t 

where All (O), A31 (O), and A33 (0) are scalars, Azl (0) and Ai (0) are 2 x 1, and A22 (0) is 2 x 2. 
The leader-follower behavior presumably characterizing the EMS imposes three zero restrictions 
in the first row of this matrix. The smaller size of Spain relative to that of France and Italy allows 
to impose two more zero restrictions in the last column of this matrix, while the last restriction is 
obtained by imposing symmetry on Az2 (0). 

The structural VAR (54), therefore, can be rewritten as: 

All (0) 0 0 
A21 (0) A22 (0) 0 
A344 A32(0) A33 (0) 

All (L) A12 (L) 43 (L) 
A21 (L) A22 (L) A23 (L) 
A31(L) A32(L) A33 (L) 

&I (L) B12 (L) B13 (L) 
B21 (L) B22 (L) B23 (L) ] (%)+Dt+( $) (57) 
B31(L) B32(L) B33 (L) t wt 

where Rlt, IV,, and Ult are the German monetary policy instrument, objectives and shock, 
respectively, R2t,W2t and U2, (Rst, W3t, and U3t) are the vectors containing the same variables for 
France and Italy (and Spain). 

27 See Giavazzi and Giovannini (1988) and Kenen (1995) on the Bundesbank’s presumed 
leading role in the EMS from the mid- 1980s onward. 

28 See Am&no and Giannini (1997, pages 166-67) for an example of identification by means of symmetry as assumed 
here. 
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C. Estimation 

Bayesian estimation of (57) exploits its block recursive structure. Following Zha (1999) let kj 
and Gj be the total number of right-hand-side variables per equation and the total number of 
equations in block j of (57), respectively, where the same set of variables enter the equations of 
each block j. If we pre-multiply (57) by the (4 x 4) matrix 

4: (0) 0 
A;; (0) = 0 

[ 
A;; (0) :: 

0 0 I 4: (0) t ’ 

and rearrange terms, the model can divided into three blocks: 

Rit = ZitSit + uit j = 1,2,3 for all t. (58) 

Here, Zj, = diag 
[ 
Zf,t, Z&, . . . , Z& ,t 

I 
denotes a (Gj x kjGi) diagonal matrix whose elements 

are the (1 x kj) vectors (Zi,,) containing all contemporaneous (in our case Rlt in block 2 and 3 
and Rzt in block 3) and lagged endogenous variables, exogenous and deterministic variables of 
equation g in block j for g = 1, . . . . Gj; Sj, = 

[’ 
L$, Si,,, . . . . Siist 1 denotes a (kiGj x 1) vector 

whose (ki x I) element (Si:,) contains the parameters of equation g in block j (for g = 1, . . ., Gi); 
and Uit = A<ii (0) Ui,. 

We make the following prior assumption on uit and Audi (0): 

with 

ujt N N (0, ytzjj) I 
E [u&l;, ) &,] = 0 for i # j, all t, and s > 0 

Yt,ii = Audi (0) A$j (0)’ and A;$ (0) = &A;' (0) . 

Thus, 
‘Yt,jj = ajt Cjj with Cii = A;' (0) AG1 (0)' . 

As explained in Section IV.B, this is equivalent to assume that uit N t, (0, C,j) , which in turn is 
the same as assuming that 

ujt ( ajt N N (0, OitCjj) (59) 
flit N Inv-x2 (Vj, 1) . (60) 

This assumption is economically plausible because it allows for the possibility that there are other 
shocks in addition to money supply shocks, such as exchange risk premium and money demand 
shocks not fully accommodated by monetary authorities, that may possibly result in large outliers 
in Ut potentially distorting our estimates.2g 

2g By imposing an autoregressive structure on ojt (or its log) instead of assuming a simple 
t-student distribution for the error term we could specify a stochastic volatility model such 
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The other prior assumptions on the model’s parameters generalize those introduced by Zellner 
(1971, Chapter 8) to take into account the presence of time-varying coefficients: a time-varying 
Minnesota prior (e.g. Doan, Litter-man, and Sims, 1984) for the slope coefficients (Sit) is 
combined with a diffuse prior on the variance-covariance matrix of the residuals (Xii) and the 
assumption made for the time variation of the error term (git) with prior independence.30 Thus: 

P CSjt, cij, git) = P Csit> P Ccii> P Gait> I (61) 

where 

PCcii) cx lc.d 
-(Gj-1)/2 

> 

6jt = PiSit- + (I - Pi) Sojf~jt qit N N (0, @i> 9 

flit N Inv - X2 (Vi, 1). 

Here, Pi is a (Gjki x Gjki) matrix governing the law of motion of Sjt, SQ is the unconditional 
mean of 6it, @ i governs the time variation of Sjt, and nit is assumed to be independent from uit. 

Now, denoting with RT the sample data for each block j of (58), the pdf of the data, 
L (RT I Zit, ait, xii, gt > CT ) conditional on the exogenous variables, the initial observation, RIO, 
and the parameters of the model (Sj, and Cjj) is proportional (0;) to: 

lCjjl-T’2 exp C (Rit - Zitbit)’ (gitCii)-’ (Rjt - ZitSit) . 
t 1 (62) 

The posterior distribution of E;’ conditional on the entire history of Sit for t = 0, . ..T (denoted 
{Sit}), gjt, and the data, is easily obtained combining (62) with p (C,i) as the following Wishart 
distribution with T degrees of freedom and scale matrix S (Zha, 1999, p. 299): 

where 

C;’ 1 {Sit}, git, RT, Rio N W (T - Gi - 1, S) 2 

1 -1 

S = C (Rjt - ZjtSit) ajt (Rjt - ZitSi,)’ e 

The joint posterior distribution of {S,,} conditional on I&, ajt and the data is obtained as 
discussed in section 4.A. Specifically, 

(63) 

(64) 

where zj,l, and IY!itl, are one-period-ahead forecast of Sjt and the variance-covariance matrix of its 

as that used by Cogley and Sargent (2002) or Uhlig (1992). However, the prior assumption chosen is sufficient to model 
temporary, non persistent shifts in the conditional variance of ujt. 

3o See the Normal-d@se case above. 
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mean square error, respectively, calculated by the Kalman Filter as in (26). 

The conditional posterior distribution of gjt is similar to (43): 

where 

gt I {Sjt) , cjj, q; Rjo N Inv-x2 (vj + T, 93) VW 

Given (63), (64) and (6.9, and initial values for Pj, aj, hjo, and 8j0, the marginal posterior 
distributions of C;‘, {bjjt} and gjt can then be obtained from the Gibbs sampler by drawing 
alternately from these conditional distributions. Here, note that, given the marginal posterior 
distribution of ajt and Cjj, we can recover the posterior distribution of At!jj (0), and thus also the 
posterior distribution of the structural residual U,, since the matrices Ajj (0) are exactly identified 
and thus linked to Cjj by a one-to-one mapping. 

As explained in Section III.A, we define Pj, Qj, Ajo, ijo in terms of few hyperparameters and then 
maximize the likelihood of the data as a function of this smaller parameter set to obtain numerical 
values that are then fed into the Gibbs sampler. More specifically, fijo and sjo are exactly as 
n,and ,8g in section 3.1.1, while the matrices Pj and Q’j are defined as: 

Pj = diug (Pjl, . ..PjGi) 

Qj = diag (Q, . . . . QjGj) fijo 

where Pj, = diag (~8)~) are (k, x ,Q) matrices with 7rBZy controlling the coefficient of the law of 
motion of each element of Sjs, and @ ‘js = diag (T~,~) are (,$ x ,Q) matrices with 7r7,g controlling 
the variance around these values actually introduced in the model, for g = 1, . ..Gj. Finally, for all 
j we set uj equal 5.31 

Given the values of the model hyperparameters, (32) is run. Then the Gibbs sampler starts 
iterating, switching between (63) (64) and (65) and taking the estimated values of ~1, . . . . r8 as 
given. The Gibbs sampler iterates 5000 times yielding 4000 draws from the joint and marginal 
posterior distributions of the parameters of interest after discarding the first 1000 draws. All the 
numerical integrations and the statistics reported are based on these last 4000 draws. 

D. Results 

In this section we report the estimation results: the estimated reaction function residuals and 
parameters derived from (57) for each country considered. The posterior median of the estimated 
residuals are reported in Figure 1. The posterior median of the estimated parameters together with 
the first and third quartile for each estimated reaction function are reported in Figures 2-5, while 

31 Note that as the first and third blocks of the model contain only one equation, (63) becomes 
an inverted gamma for j = 1. 
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Figure 6 reports the posterior median of the error variance. The sample period is from January 
1980 to December 1998, but the reported results are from February 1981 to December 1998 
because 24 observations are used to initialize the estimation procedure. In Table 1 we also report 
the estimated hyperparameters (with the same notation is as in Section 3.A). 

Table 1. Estimated Hyperparameters 
Germany France Italy Spain 

0.9782 0.9922 0.9328 0.9814 
1.0 1.0 1.0 1.0 

0.3039 0.2075 47.0987 0.0668 
6.8168 10.659 6.3644 0.9099 

363.376 8.89e-003 377848.0 136.187 
0.2183 2.7086 l.l9e-005 2.4612 

4.52e-007 4.61e-009 3.22e-008 9.36e-006 
0.9849 0.9429 0.9952 0.9673 

The estimated hyperparameters are fed into the Gibbs sampler, affecting the prior assumptions 
actually used in estimation, and thus also our posterior estimates of the model residuals and 
parameters. Therefore, a few remarks are in order regarding the estimated hyperparameters in 
Table 1. First, without loss of generality, to economize on free hyperparameters, we assume 
that the tightness on the coefficients of the lagged endogenous variables (rrz) is equal to 1 (as 
suggested by Doan, 2000, Chapter 10). Second, time variation, as controlled by ~7, does not 
appear to be a major feature of the data, as will also be discussed below. Third, the prior mean of 
the coefficient on the first lagged endogenous variable (7r1) is estimated to be close to one for all 
countries, as expected. Higher order lags, decay rather quickly in the case of Germany, France 
and Italy, but less so in the case of Spain (r4). Fifth, overall parameter uncertainty, as controlled 
by T6, seems higher in the case of Spain and France than Italy and Germany, meaning that the 
posterior distributions should be more concentrated in the latter cases. Finally, we note that r8 is 
very close to one for all countries considered, meaning that the process for the coefficient vector 
S.jt is close to a random walk. 

The estimated residuals may reflect potential model misspecifications and the model’s goodness 
of fit. As we can see from Figure 1, they appear remarkably well behaved for all countries 
considered: there are essentially no outliers and there is also little or no evidence of serial 
autocorrelation and/or heteroschedasticity. 
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Table 2. White Noise Test Statistics 
Germany France Italy Spain 

Sample Mean 0.0053 0.0062 -0.0301 -0.0044 
(0.937) (0.927) (0.659) (0.948) 

Cum.Period. 0.0816 0.0665 0.0617 0.0997 
(0.0981) (0.0981) (0.0981) (0.0981) 

Q(4) 6.2035 1.4762 2.3753 5.3435 
(0.184) (0.831) (0.667) (0.254) 

Q(8) 7.1921 8.3869 6.5074 12.186 
(0.516) (0.397) (0.591) (0.143) 

QW 7.8025 10.430 16.4072 23.8513 
(0.800) (0.578) (0.173) (0.021) 

Arch(2) 2.7708 3.5593 7.1603 33.4121 
(0.250) (0.169) (0.029) (0.000) 

This is also borne out by a battery of standard test statistics reported in Table 2. Table 2 
reports summary and test statistics on the null hypothesis that the estimated posterior median 
of the residuals follow a white noise process. The first two lines report the sample mean and 
the p-value for the null hypothesis that this is zero, respectively. The second two lines report 
a Kolmogorov-Smirnov statistics for the Durbin’s (1969) cumulated periodogram test.32 The 
following six lines report the Ljung-Box’s statistics for the null hypothesis of absence of serial 
correlation of order higher than specified with their respective p-values. Finally, the last two lines 
report Engle’s test for the null of absence of autoregressive conditional heteroschedasticity of 
second order together with their p-values in brackets. 

AS we can see from this table, the null hypothesis of zero mean cannot be rejected for all 
countries, and the absence of heteroschedasticity and autocorrelation is also clearly rejected 
by all statistics for Germany and France. The results for Spain, and to a lesser extent also for 
Italy, how some presence of ARCH effects and autocorrelation of order higher than 12, though. 
Nonetheless, compared to other studies one notable difference is the absence of large outliers 
in these residuals corresponding to the 1992 EMS crisis and the subsequent periods of financial 
turbulence documented by Favero and Giavazzi (2002), among others. This is because these 
episodes have been captured by the time-varying interest rate volatility introduced through our 
prior specification, whose posterior medians are reported in Figure 6. 

We can now focus on the estimated model parameters. Figure 2 reports the posterior median of 
selected parameters of the Bundesbank’s reaction function together with a band containing 50 
percent of the posterior distribution. Interestingly, the estimated parameters appear rather stable 

32 This test cumulates the periodogram (i.e., the squared Fourier transform) over frequencies 0 to T and 
scales it so as to have an end-value equal one. If the series examined is white noise, its 
cumulated periodogram should differ only marginally from the theoretical periodogram of 
a white noise, which is a straight line. Concretely, the table reports the maximum gap between the actual and theoretical 
cumulated periodograms together with the approximate rejection limit at 5 percent significance level in brackets. 
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over time, except for the structural break around the time of German unification, which does not 
even appear in all coefficients. This suggests that no major behavioral change took place in the 
Bundesbank reaction function in the run up to the monetary union (EMU). 

These estimation results conform well to standard views of the behavior of the German central 
bank: they show a high degree of interest rate smoothing or persistence, relatively low weight on 
other European countries’ targets and a relatively large weight on the domestic inflation target, 
with some weight also attached to U.S. variables. The coefficient of the German own lagged 
interest rate remains close to 1 throughout the sample period. Among domestic objectives, the 
inflation gap is by far the most important variable, although its effect is not estimated very 
precisely. The U.S. interest rate and the DMAJS. dollar exchange rate also have notable impacts.33 
The coefficient on the U.S. federal funds rate, in particular, is comparable in size to that of the 
domestic inflation target. The coefficients of other European countries’ targets are generally not 
significantly different from zero, except for the output gaps and the Italian exchange rate gap. But 
their magnitudes are quite small compared to other objectives and slightly declining over time. 
The coefficients of foreign inflation gaps are clearly insignificant statistically. 

The parameters of the reaction function of the Bank of France also conform well to what one 
would expect for a follower country in the EMS (Figure 3): the German policy interest rate is 
the most important variable, and exchange rate targets have a smaller (and slightly declining) 
but significant weight. Domestic and other countries’ inflation and output targets, instead, have 
weights which are either very small or not significant statistically. Only monetary growth appears 
to have had a stronger role, but this declined markedly over time. 

The results for Spain, and to a lesser extent Italy, are consistent with the view that the Bank 
of Spain and the Bank of Italy were less constrained than the central banks of other European 
countries by the EMS (Figure 4 and 5). The Bank of Spain, in particular, appears to have been 
the least constrained among the countries considered. Both reaction functions show a much 
smaller and insignificant weight attached to the German contemporaneous rate and somewhat 
larger weights on output gaps compared to France. Interestingly, as in the case of France, the 
coefficient of the German exchange rate appears to have declined significantly after 1992. The 
reaction function of the Bank of Spain, in particular, also shows more instability, consistent with 
Spain’s later entry in the EMS. The weight attached to monetary growth in Italy (Spain) is also 
smaller (larger) than that in the French reaction function. The weight on the domestic output gap 
affects Spanish short-term interest rates to a much greater extent than in France or even Italy, with 
an impact comparable to that of the German interest rate. Finally, interest rate persistence is the 
smallest in Spain. 

Overall, these results show how difficult it would have been to choose a restricted and yet uniform 
econometric specification to describe the different behavior of the central banks considered. The 
fact that we find relatively “clean” estimated residuals then confirms that most of the behavioral 
differences across countries and over time are well captured by the adopted econometric 

33 Note that an increase in the exchange rate gap denotes a depreciating movement. 
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specification for the system of reaction functions studied. 

VII. CONCLUSIONS 

In this paper we have reviewed recent developments in the literature on Bayesian VARs and have 
discussed how to apply some of these results with an application to the estimation of a system of 
monetary reaction functions. Starting from the general Bayesian principle applied to the concrete 
case of VAR estimation, we have described several prior distributions and some useful extensions 
of the basic model, including nonnormal data, nonlinear models, and time-varying coefficients 
models. In all cases analyzed, we have provided expressions for the posterior distributions, either 
analytically or numerically computed. Besides its interesting retrospective economic content, 
the application presented showed how flexible the Bayesian approach might be in dealing with 
complex dynamic economic problems. 
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