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I. INTRODUCTION

Vector auto-regressive models (VARSs) are a useful starting point for econometric modeling and a
standard benchmark for the analysis of dynamic economic problems. In the original formulation
of Sims (1972 and 1980), VAR users should rely mostly on the data to study the interaction
among the economic variables of interest in order to avoid imposing “incredible restrictions.” This
approach, however, may create two problems that have been widely discussed in the literature
over the last three decades or so. First, leaving the lag structure the VAR model unrestricted to
avoid imposing the incredible restrictions of traditional simultaneous equation models may result
in overfitting: given their generous parameterization, VARs may suffer from a loss of degrees
of freedom, which decrease geometrically with the number of variables and proportionally with
the number of lags included, resulting in inefficient estimates. Second, by using reduced form
VARs to avoid imposing identification restrictions on the contemporaneous causation among the
variables of interest one may not go beyond a simple description of the data.

This paper reviews the efforts spent over the past several years to address the overfitting problem
by adopting a Bayesian approach to specification and estimation of VARs. The Bayesian approach
to estimation regards the true population structure as uncertain and does not assign too much
“weight” on any particular value of the model parameters (e.g., zero-restrictions on certain
coefficients). Instead, it takes this uncertainty into account in the form of a prior probability
distribution over the model parameters. The degree of uncertainty represented by this prior
distribution can then be altered by the information contained in the data, if the two sources of
information are different. As long as the prior information is not too ‘vague’, it is altered only
by the “signal” and not by the “noise” contained in the data sample, thus reducing the risk of
overfitting. As a result, Bayesian VARs (BVARs) are known to produce better forecasts than
reduced form VARs estimated in a classical way and, in some cases, even better than univariate
autoregressive moving average processes or structural models.?

The choice of a prior distribution summarizing the researcher’s uncertainty over the model
parameters is a crucial step in specifying a BVAR. As pointed out by Leamer (1978), for most
inference problems in economics, prior information matters in the sense that two economists can
legitimately make different inferences from the same data set. In order to deal with this dependence
of inference on prior information and to characterize the mapping from the set of alternative priors
onto the corresponding inference, a method must be chosen to combine sample information with
prior information, and a set of alternative priors must be considered. The Bayesian approach

to estimation provides the needed method, while the range of alternative priors depends on the
particular economic problem at hand.

We review the Bayesian estimation principle in the specific case of VARs in Section IL. In Section
III, we review the most relevant prior distributions that have been proposed in the literature, from
the original and easily computed “Minnesota prior” to the most recent and computationally more
demanding assumptions. In Section I'V, we discuss how to extend the basic model to deal with

2 See Canova (1995) for specific references.



(1) time-varying coefficients, (ii) nonnormal data and (iii) nonlinear relations. In Section V, we
discuss basic issues in forecasting and structural analysis with BVARs. In addition, in Section VI,
by drawing on our own applied work (Ciccarelli and Rebucci, 2002), we present an application
of these methods to the estimation of a system of monetary reaction functions for four European
central banks under the European Monetary System. This application uses some of the results
previously discussed and iltustrates how flexible the Bayesian approach is. Section VII concludes.

Our contribution, therefore, is to provide the reader with a road map to the general method and
a few specific results that may be applied in a flexible manner for the empirical analysis of

dynamic multivariate economic problems. The presentation in the paper reflects to some extent
the broad chronological progress of research in this area, which in turn followed to some extent
developments in computer technology permitting the estimation of increasingly more complex

models at reasonable computing costs.?

Today’s appearance of an increasing number of Bayesian applications, in particular, seems
linked to enhanced and cheaper computing power. As it will evident from the rest of the paper,
with statistically and economically richer prior assumptions than the original Minnesota prior,
integration problems become easily intractable analytically and must be solved numerically. But
the difficulties of implementing numerical integration have been substantially reduced by the
recent advances in computer technology and in sampling-based methods. Quoting from Hsiao
and others. (1999) therefore, there is no excuse any longer for not considering Bayesian methods

because of practical difficulties.

I1. THE BASICS

A. BVARs as an Answer to the Overfitting Problem

Consider a typical VAR,
Yi=BY, 1+ BY, o+ ..+ BYp+ Dz + €y, t=1,..T (1)

where Y} is an x 1 vector of endogenous variables and ¢; is a n X 1 vector of error terms
independently, identically and normally distributed with variance-covariance matrix ¥,
ee~1IN(0,X), By (I=1,...,p)and D are n x n and n x d matrices of parameters respectively,

and 2, is ad x 1 vector of exogenous variables.

Classical estimation of models like (1) may yield imprecisely estimated relations that fit the data
well only because of the large number of variables included, a problem known as ‘overfitting in
the literature. In fact, the number of parameters to be estimated, n (np + d), grows geometrically
with the number of variables (n) and proportionally with the number of lags (p). When the

3 Nonetheless, this survey does not provide specific indications on software implementation. The interested reader
may consult Geweke (2000) for references to software freely available on the web for the implementation

of some of the methods review in this paper. The application in Section V1 of the paper has been implemented in RATS,
which has a number of preprogrammed functions and procedures for Bayesian estimation of VARs.



-5-

number of variables on the right hand side of (1) is relatively high and the sample information

is relatively loose, it is likely that the estimates are influenced by noise as opposed to signal,
especially if the estimation method is designed to fit the sample data as closely as possible. When
this is the case, it is recommendable to estimate models like (1) by imposing some restrictions to
reduce the dimension of the parameter space. Therefore, the problem is to find restrictions that are

as credible (in the sense of Sims, 1980) as possible.

A Bayesian approach to VAR estimation was originally advocated by Litterman (1980) as a
solution to the ‘overfitting’ problem. The solution he proposed is to avoid overfitting without
necessarily imposing exact zero restrictions on the coefficients. The researcher cannot be sure that
some coefficients are zero and should not ignore their possible range of variation. A Bayesian
perspective fits precisely this view. Without putting too much weight on certain values, one
may think of this uncertainty over the exact value of the model’s parameters as a probability
distribution for the parameter vector. The degree of uncertainty represented by this distribution
can then be altered by the information contained in the data if the two sources of information are
different. As long as the prior information is not too vague or non-informative, it should be altered
only by the ‘signal’ and not by the ‘noise’ contained in the sample, thus reducing the overfitting

risk.

More specifically, Litterman (1986) specifies his prior by appealing to three statistical regularities
of macroeconomic time series data: (i) the trending behavior typical of macroeconomic time
series; (ii) the fact that more recent values of a series usually contain more information on the
current value of the series than past values and (iii) the fact that past values of a given variable
contain more information on its current state than past values of other variables. If we apply these
statistical regularities, (1) becomes a multivariate random walk.* A Bayesian researcher instead
can specify these regularities by assigning a probability distribution to the parameters in such a
way that; (i) the mean of the coefficients assigned to all lags other than the first one is equal to
zero; (ii) the variance of the coefficients depends inversely on the number of lags; and (iii) the
coefficients of variable j in equation g are assigned a lower prior variance than those of variable g.

As we shall see below, these requirements can be expressed formally by introducing a vector

of parameters (called hyperparameters), say I = (7, ...7). For instance, w1 may control the
value of the mean of the first own lag coefficient, 7, controls the variance of the lags of variable
g in equation g, 73 controls the variance of the lags of variable j in equation g, 74 controls the
speed of decreasing of the variance as the number of lags increase, 75 controls the variance of the
deterministic/exogenous part, and g controls the overall degree of prior uncertainty. Therefore,
the original problem of estimating n (np + d) parameters can be converted in a problem of
estimating just six “hyper-parameters.” As we will see, this is only one example, although most
BVARSs were originally specified by using this particular set of hyperparameters.

4 This specification has been criticized on the ground that the resulting estimation procedure might

be affected by spurious regression problems as in the classical case, due to the presence of unit roots or stochastic trends
in the data. Proponents of the Bayesian approach to VAR estimation, however, argue that this is

not the case. See the special issue of the Journal of Applied Econometrics (1991, Vol. 6.) in which the Bayesian method
of treating unit roots is thoroughly discussed, for a presentation of the arguments and the counterarguments.



Additional data characteristics can be easily accommodated by introducing different

hvnernarameters to control for other relevant information. Cointecrated svstems. for instance
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may be treated within the same framework by specifying, a priori, long-run relations among the
variables of interest. As shown by Alvarez and Ballabriga (1994), however, a Minnesota-type
prior with hyperparameters search performs well in the presence of cointegration. Alvarez and

Ballabriga (1994) show also that adding long-run restrictions to the prior does not improve the
v qnnhpd to VAR models
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B. Bayesian Estimation of VARSs in a Nutshell

To state more formally the Bayesian estimation principle, consider (1) rewritten in compact form

as:
:Xtﬁ—"‘Et t= 1,...,T, (2)

where X; = (I, @ W,_1) is n x nk, W,y = (Y/,...Y_ p,zt) is k x 1, and
3 = vec(By, B, ..., Bp, D) is nk x 1. The unknown parameters of the model are 3 and

3.

Bayesian estimation of (2) is simple, in principle, and works as follows. Given the probability
density function (pdf) of the data conditional on the model’s parameters (the information
contained in the data in the form of a likelihood function),’

LY | 5,5) o [ exp {—% S (Y- X =7 (¥ - m)} , ®

t

and a joint prior distribution on the parameters, p (3, ¥), the joint posterior distribution of the
parameters conditional on the data is obtained through the Bayes rule,

_ pBEYLY|SY)

x pB,E) LY |5,%),

noting that, by definition of conditional probability, the joint pdf of the data and the parameters,
p(8,%,Y), can be written as

p(B,5Y) = LY |5X)p(5 %)
= p(B,E[Y)p(Y),

where oc denotes ‘proportional to’. Given p (3, ¥ | Y), the marginal posterior distributions
conditional on the data, p (X | Y') and p (3 | Y'), can then be obtained by integrating out 3 and
from p (3, X | Y), respectively. Finally, location and dispersion of p (X | Y) and p (3 | Y) can be
easily analyzed to yield point estimates of the parameters of interest and measures of precision,
comparable to those obtained by using a classical approach to estimation.

> We shall denote probability density functions with a ‘p’ when they are prior or posterior
distributions of the parameters, and with a ‘L’ when a likelihood function.



C. A Monte Carlo Simulation Method for Numerical Integration: The Gibbs Sampler

In many applications, the analytical integration of p (3, % | ) may be difficult or even impossible
to implement. This problem, however, can often be solved by using numerical integration based
on Monte Carlo simulation methods.

One particular method used in the literature to solve similar estimation problems to those

discussed in this paper is the Gibbs sampler.® The Gibbs sampler is a recursive Monte Carlo
method which reguires nnlv Iznnwlpdop of the full conditional nncfermr distribution of the

LILVEIIUE VY ILIWAS Lv YU (VI SVITRIVS S {474

parameters of interest, p (3 ] ,y) and p(X | 5,y). Suppose ¥ and (3 are scalars and that the
conditional posterior distributions p (3 | 3,y) and p (3 | £, y) are known. Then the Gibbs sampler
starts from arbitrary values for 5% and £(©, and samples alternately from the density of each
element of the parameter vector, conditional on the values of the other element sampled in the

nrpv:nnc iteratinon and the data Thic the Gihhe camnler camn
tl WY IUUD 1w QLEVEE i LW UdLL. Lllub, LI NIV UD Dmll}ll\/l Julll}l

/7’(1) from p(BlE(O,y)

D from p<2|ﬁ ,y)
5% from p(ﬁlEl) Y)
@ from p<$|ﬂ“ ,y)

A™ from p (3| S Y,y)
™ from p (E | ﬂ(m),y)
and so on.

The vectors 9™ = /j’(m), Z(m)) form a Markov chain, and, for a sufficiently large number of

iterations (say m > M), can be regarded as draws from the frue joint posterior distribution. Given
a large sample of draws from this /imiting distribution, any posterior moment or marginal density
of interest can then be easily estimated consistently with its corresponding sample average.

I11. ALTERNATIVE PRIOR DISTRIBUTIONS

A second problem in implementing Bayesian estimation of (2) is the choice of a prior distribution
for the model’s parameters, p (3, X2). This choice is a fundamental step in the specification of the
model. This section discusses several alternatives.

Many priors have been proposed in the literature, according to the specific economic problem,
the sample data, and the way the parameters of the prior p (3, %) are determined. These,

6 See Gelfand and others (1990) for a detailed discussion of the Gibbs sampler and Canova

and Ciccarelli (2000), Ciccarelli and Rebucci (2001) and Hsiao and others (1999), among others, for some applications.
The brief summary in the text is borrowed from this latter contribution. For a more general

discussion of numerical Bayesian methods see also Geweke (2000) and Gelman and others (1995).



however, share common features. Full Bayesian estimation of (2) would require specifying a
prior distribution also for the parameters of the prior p (3, ¥) and then integrating them out of the
posterior distributions, p (5, | Y) . As noted, however, these integrations may be complicated
or even impossible to implement. In addition, the specification of the prior must take some
hyperparameters as given, eventually. The discussion of alternative priors, therefore, may be
organized according to the way the problem of the dependence of the posterior moments on the
unknown hyperparameters is solved.

One solution is to substitute estimates of the hyperparameters directly into the formulas for the
mean and variance of the posterior distributions of the parameters of interest, sometime called
Empirical Bayesian Estimation. These could be obtained in a previous stage by OLS, maximum
likelihood, GMM, and other optimization criteria or informal methods such as the rules of thumb
discussed above. Since uncertainty in the estimation of the hyperparameters is not accounted
for by the substitution, the empirical Bayes approach will be only an approximation to the full
Bayes approach, possibly approaching it in the limit, depending upon the statistical properties of
the estimators used or the quality of the rules of thumb used. An empirical Bayesian estimate,
may converge to a full Bayesian estimate if the estimator of the hyperparameters converges to its
true value as the sample size increases. An alternative solution, sometime called Hierarchical
Bayesian Estimation in the literature, is to incorporate into the model the prior distribution of the
hyperparameters and then obtain the marginal densities of the parameters of interest by integrating
out the hyperparameters from the joint posterior density numerically.

We are now going to discuss the empirical and the hierarchical Bayes approaches in turn.

A. Empirical Bayes Estimation

The Minnesota Prior

While the number of possibilities for a linear regression model as (2) is vast, a commonly used
prior in the Bayesian V AR literature is that proposed by Litterman (1986), sometime called a

Minnesota prior.

Consider the problem of estimating the (k x 1) vector /3, containing the parameters of the g
equation of (2) when the variance of the error term (0379) is known. Litterman (1986) assumes

that o
p (Bg) =N (ﬁg?QQ) ’ (4)

where 3 , and Qg denote the prior mean and variance-covariance matrix of 3, respectively. The
residual variance-covariance matrix, ¥, is assumed fixed and diagonal, aggIT. Stacking the time
observation of the g** equation, (2) can be written as

Y, =Xpf3,+¢ g=1,..n;

where Y, and e, are 7' x 1 vectors, and X is the stacked version of X; in (2).
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Given the assumed independence of the error terms, the likelihood (3) is just the product of
independent normal densities,

LY |85 « |02, exp{—— (Yg~Xﬁg)’(Yg—Xﬂg)}. (3)

9.9

The posterior distribution of the parameters of interest, given by

p ([))g | Y) =P (ﬁg) L (Y | ﬁ,Ug,g) :
is proportional to:
ot [0 e {3 [(9,- 8077 (- ) + o (= X8 (- X))

9:9

1 1 / ! ' N— = = _ - = 1>
> {_§ {(;2—- (Yleb - ZY,X/))Q +‘69X Xﬁg) +/BgQg 1ﬁg - 25_;99 1ﬂg +ﬁngg 159):\}

9.9

X exp {—-21- Kﬂ’g ((—T%—X’X + Qg—l) B, —2 (UégX’Y + Qg—lﬁg> ﬁg)] } .

9.9

7 and [Q ‘ ? are constants with respect to the integration for 3, in the

first proportlonallty statement above, while Y,Y; and /ingg 1[)’ are constants in the second
proportionality relation. Now, completing the square in the last exponentlal we obtain

p(B8,]Y) xexp {—% |:(/Blg = ng}g)lﬁg_1 (ﬁ; - Q-"BQ)}}

Bg =Y (leﬁg + Ug_,EX,YQ) g

with

and )
Q, = (9, +o2x'X)"

In other words, p (8, | Y) = N (fj’g, Qg) , where once we know !, 3., and 0,2, we can take [J’
as a point estimate.

Several remarks are in order here. First, note that, given the assumptions made, there is prior and
posterior independence between equations. This explains why the equations can be estimated
separately. Second, as noted above, ¥ is assumed fixed and diagonal here, with its diagonal
elements obtained from the estimation of a set of univariate autoregressive models of order p,
AR(p). Third, 3, and €, are unknown and specified in terms of few hyper-parameters. Finally,
by assuming an 1nﬁn1te dlspersmn of the prior distribution around its mean (Q 1= O)——l €.,

by assuming a diffuse prior in the terminology used in the literature—the posterior mean of ﬁ
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becomes /}g = (X'X)~! X'Y,, which is the OLS estimator of Bg.7

Litterman (1986) then assigns numerical values to the hyperparameters of the model on the
presumption that most macroeconomic time series are well represented by random walk processes,
as discussed in the previous section. Specifically, he assumes that I1 is a degenerate random
variable on the assigned values with the following structure for the diagonal elements of 2,:

B e /1™ for the g™ lagged endogenous variable
var (8,) = § (mems/I™) 04,4/0;; for the j* lagged endogenous variable
TeM50gg for deterministic and exogenous variables

Here, g controls the overall prior tightness (or uncertainty); 7, controls the tightness of own lags,
while 73 controls the tightness of own lags relative to the tightness of lags of the other variables
in the equation; 7, controls the lag-decay in the prior variance with [ = 1, ...,p denoting the
variable’s lags; 75 controls the degree of uncertainty on the coefficients of the deterministic and/or
exogenous variables in equation g, while the factors o, , and o ; ; measure the scale of fluctuations
in variables g and j taking the unit of measure of different variables into account. Finally, the
mean vector is specified as Bg = (0,...,0,71,0,..0), where m is in the g" position and represents
the prior mean of coefficient on the first lag of the endogenous variable in equation g.*

Obviously, in order to provide a closer approximation to a full Bayesian estimation, these
hyperparameters may be estimated consistently rather than being assigned arbitrary values. For
instance, the pdf of the data (5) can be written in terms of [T and then maximized—the approach

that we shall take in our application reported in Section VI of the paper.

The Diffuse Prior

The two main features of the Minnesota prior, the posterior independence between equations and
the fixed residual variance-covariance matrix, can be relaxed with the priors considered in this
subsection and in the next one. In fact, it can be shown that (see Kadyiala and Karlsson, 1997),

with the (diffuse) prior distribution
p(6, %) oc ST,
the joint posterior distribution is given by
p(BE|Y)=p@B|EY)p(Z|Y),

where )
p(A15,Y) =N (BuTo(X'X)) ©)

" Thus, a diffuse prior may be interpreted as assigning zero probability weight to the prior
information relative to the information contained in the data.

8 Note that by allowing 7 to approach infinity the prior becomes diffuse, while if 73 is
set to zero, the prior defines a set of univariate AR(p) models.
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with X (of dimensions T x k) and Y (of dimensions 7" x n) denoting the matrix version of X; and
Y, respectively, B = [Bg, ey By, D']' (of dimensions & x m), and 1W (Q, q) denoting an inverted
Wishart distribution with scale matrix @) and degrees of freedom ¢.° Further, integrating ¥ out of
the joint posterior distribution, the marginal posterior distribution of B (the matrix form of the
parameter vector /3), p (B | Y), can be shown to be

-T/2

?

N / -~ ~ / ~
x ’ (Y _ XBm) (Y _ XBols) ¥ (B - Bols) X'X (B _ Bols)

~ ! -~
which is a generalized t-Student distribution with scales (Y - X Bols) (Y - X Bols) and X'X,
mean B,;,, and degrees of freedom 7" — k (see Kadyiala and Karlsson, 1997, page 104)."°

Conjugate Prior Distributions

A matematically convenient way of solving the main drawbacks of the Minnesota prior is to
use a conjugate family of prior distributions. Conjugacy is the property by which the posterior
distribution follows the same parametric form as the prior distribution.!’ In what follows we
describe two possibilities, the Normal-Wishart and the Normal-Diffuse prior.

The Normal-Wishart Prior To relax the assumption of a fixed and diagonal variance-
covariance matrix of the residuals, a natural conjugate prior for normal data is the Normal-Wishart,
p(BIT) = N(B,Xe9Q) )
p(X) = W (2, ©

i.e., the unconditional prior distribution of 3 will be normal with prior mean and variance
EB) =pFandV (8) = (a—n—1)""5 @ Q, respectively, where o denotes the degrees of
freedom of the inverse-Wishart and satisfies & > n + 1.

Given this prior assumption, the posterior distribution is obtained as (e.g. Kadyiala and Karlsson,

¢ The Wishart distribution is the multivariate generalization of the gamma distribution. If W ~ W (Q, q),

where W is of dimensions k x k, then its density is proportional to | W] ™%/ x exp (—=3tr (Q7'W)). Onthe other
hand, if W1 ~ W (Q, q), then W has the inverse-Wishart distribution. The inverse-Wishart is the conjugate prior
distribution for the multivariate normal covariance matrix. More references for univariate and multivariate distributions
and for sampling from them are Zellner (1971, Appendix B) and Gelman et al (1995, Appendix A).

19 This integration, however, can also be approximated numerically by first drawing . from
the inverted Wishart (7), and then using these draws to simulate 3 from (6).

11 Formally, conjugacy is defined as follows: if < is a class of sampling distributions p (y | 0), and R
is a class of prior distributions for ¢, then the class X is conjugate for S if p(y | 8) € X

for all p(-|6) € S and p(-) € N. Natural conjugate priors arise by taking N to be the

set of all densities having the same functional form as the likelihood (Gelman et al. 1995).
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1997, page 104)

p(BIT.Y) = N(BTe0) (10)
p(E|Y) = W (E,T+a) (11)
where
-~ f~A—1 . vt w\—1
= UL + A A)
B=20 (Q-lB + X’XBolS)
and

Y = B X'XB,,+BQ'B+%
< (v = XBay) (Y = XBa,) - B' (@7 + X'X) B.

As before, integrating 3 out of the joint posterior, the marginal posterior distribution of B is
a multivariate t-Student distribution, whose integration can be easily performed numerically
(Kadiyala and Karlsson, 1997, page 104).

Note that working with this prior, it is necessary to assume £, 2, and ¥ as known. However, a
Minnesota-type of specification for these matrices could be adapted and used here. In practice, 3
is specified as dependent upon only one hyper-parameter that controls the mean of the first lag
of the endogenous variable, { is specified as a diagonal matrix according to the scheme given in
the previous section, and the diagonal elements of T are set as 54y = (@ —n — 1) 57, with 57,
estimated from univariate AR(p) models. Finally, the prior degrees of freedom, ¢, must be chosen

so as to ensure the existence of the prior variances of the regression parameters.

The Normal-Diffuse Prior A slightly different prior, which in addition to allowing for
non-diagonal residual variance-covariance matrix also avoids the Normal-Wishart kind of
restrictions on the variance-covariance matrix of 3, is the Normal-Diffuse prior firstly introduced
by Zellner (1971). The key assumption made by Zellner here is prior independence between (3
and X, where

p(B) = N(B.9),
p(E) = IS,

The combination of these priors with the data yields the following marginal conditional
distributions

p(BIxY) = N(39) (12)
p(=1B8Y) = W(f)“l,T> (13)
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with
B o= Q08+ 8 X'X)By) (14)
Q = (Qt+(zlex'X))"
£ = (v-xBa) (Y - XBu) + (B~ Ba) X'X (B = Ba,)

and where W (f)‘l, T) denotes the inverse of iV

Then the conditional posterior of 3 can be integrated analytically to obtain the marginal, but
the form of the latter is complicated in the sense that large differences between the information
contained in the prior and the likelihood can cause the posterior to become bimodal, and thus the
posterior mean to have low posterior probability (see, again, Kadyiala and Karlsson, 1997, page
106). For this reason it is preferable to integrate numerically.

B. Hierarchical Bayes Estimation

A prior distribution for the hyper-parameters can be incorporated into the specification of the
model in the context of the hierarchical version of Zellner’s SUR model, as recently proposed
by Chib and Greenberg (1995). In general, this kind of specification does not provide a closed
form solution for estimation, and full Bayesian estimation is approximated by using numerical
integration methods. The hierarchical setup is relatively straightforward to work with in a
simulation context and provides a great deal of flexibility in modeling as it increasingly more
widespread application shows.

Chib’s hierarchical SUR model is specified as follows:

Y, = XiB+e, gr ~ No (0, %) (15)
g = M0+, ¢ ~ Nux (0, D) (16)
g = M1“+n7 nNNm (O,Dl) (17)

where the nk x 1 parameter vector 3 is related to a m x 1 parameter vector §, which in turn is
modeled as a function of a r x 1 parameter vector p. If r < m < nk, then the VAR parameters
are projected onto progressively lower-dimensional spaces. The literature refers to (15), (16) and
(17) as the first, second and third stage of the hierarchy, respectively.

The following assumptions are made by Chib: (i) M,, M;, p and D; are known; (ii) the matrices

¥, D, are unknown; (iii) the errors are mutually independent across the hierarchy, implying that Y;
is conditionally independent of 8, D,. As a result, the likelihood of the data, again, is proportional
to:

T
L(Y | A.%) oc 5| exp {—% 3 (Fem X8 57 (% - m} S

t=1
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The prior information can then be completed by assuming
p(TND;Y) =p (57 p (D7),

with p (571) = W (£, 5) and p(D;?) = W (D,, p) , where all the hyperparameters are assumed
known. For instance, they may set in accordance to the Minnesota prior as before or more simply
be estimated form data.

The posterior density of the parameters of interest ¢» = (5, %, 6, D,) is given by
pW|Y)ox L(Y[5,Z)p#),

where p (1) is constructed from (16) and (17) (stages 2 and 3 of the hierarchy, respectively) and
the prior distributions on the parameters. The Gibbs sampler can then run cycling through the
conditional posterior distributions (19)~22) below, which are in standard form (see Chib and
Greenberg, 1995):

Bl 6 Y ~N(5,9): (19)

S g Y ~ W (z s+ T) : (20)

019 Y ~N (A (DT Mip+ MyD;5), Ar) s @D
D | 4_p, ¥ ~ W (Dop+ 1) (22)

where
-1
=0 (Do‘lMOH + ngz—lyt) . Q= <D0_1 + ngz—lxt> ,
i i
T -1
3= [i_l + Z (Y} - Xtﬁ) (Yt - Xtﬁ)l] )
t=1
Ay = (D7 + MDD M)

D, =

b+ 33, -0) (5,9 |

The number of stages in the hierarchy could be more or less than the three discussed here. In
the case of more stages, we essentially have to add more conditional posterior distributions
to the Gibbs sampler. In the case of less stages, as for instance in the case of the Minnesota
prior discussed in the previous section, we have to fix somewhat arbitrarily the value of the
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hyperparameters of the omitted stage.
For example, the Minnesota prior—see equation (4) above—can be written as

B, =M +v,, vy~ N(0,9Q), (23)
where 8, = M6, § = (71 0)', and

<
[

L 0 1 -
with the ones of the first column and the zeros of the second referring to the g** row of the VAR.
Therefore, the difference between the latter specification and the Chib’s three-stages hierarchy is
that 6 and (), are either estimated or assumed to be known based on the Minnesota rules of thumb,
while we give a proper prior on the hyper-parameters of the model in the three-stages hierarchy.
Obviously, the hierarchical model is closer to a full Bayesian model than an empirical Bayesian
one in the sense that it incorporates a more general prior assumption for the hyper-parameters.

IV. SOME EXTENSIONS

In this section we consider a few useful extensions of the models discussed thus far. In particular,
we shall discuss models with time-varying coefficients (TVC), which have been shown to capture
both nonlinearities and nonnormalities in the data, an alternative to the normal data model that
captures outliers (or fat-tails) in the distribution of the error terms, and briefly touch upon regime
switching models. The first two extensions are relevant for modeling financial data. The latter

is more of interest in macroeconomic applications. The models discussed in this section clearly
illustrate the flexibility of a Bayesian approach to estimation, which allows complicated estimation
problems to be handled in a fairly simple way.

A. Time-Varying Coefficients
The Kalman Filter with a Minnesota Prior

A standard tool for the estimation of linear regression models with time-varying parameters is the
Kalman Filter. The Kalman Filter is an algorithm for recursively updating a linear projection for
a dynamic system represented in state-space form, given a set of initial values on the parameters
describing its status.'”> An empirical Bayesian procedure for the estimation of a time-varying
version of (2), equation-by-equation, with known variance-covariance matrix of the residuals as
discussed in Section III.A, has been developed by Doan et al. (1984). Doan et al. suggest to

12" See Hamilton (1994, Chapter 13) for more details on the Kalman Filter.
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specify the law of motion of 3, as a first order autoregressive process represented in state-space
form and to give a Minnesota-type prior on 3, ;, so that the Kalman Filter can be applied to

update it for all ¢, recursively.

Consider the problem of estimating the entire parameter vector of (2) when this changes over time
in all periods ¢ (thus, we want to obtain a sequence of posterior distributions for 31, 35,....07), and
assume that 3, follows a stationary V AR process of order one, such as:

By =AB,_1 +m Ur | i1~ N (0, (I’)7 24

where ) B
Be1|l-1~N (ﬂt—1|t—17 Qt-lqt—1) )

with 3,_,, e, and 1, independently distributed. Here, X, A, and ® are assumed to be known,
and I,_; denotes the information available at time ¢t — 1. Thus, we are considering the following
specification for (2):
Y, = Xif8:te, g |l ~ N(0,%); (25)
By = ABi1+m M, | l-1 ~ N (0, ®);
Biw | loi~N (ﬁc—11t—179t—1|t—1) .
Note that, conditional on I,_;, the prior distribution of /3, is

By | g1 ~ N (ﬁ:!t—h :\t—l) ’

where . B
Bi—1 = AByqp— and Oy = AQi 1A+ @,

Substituting for (3, in the first line of (25), we obtain a state space model for 3, with observation

equation given by
Y, = Xofy 1 + Xan, + &

Now, it is possible to show (e.g., Ballabriga et al., 1998) that, under these assumptions, the
marginal posterior distribution of 3, is given by:

/jt I 5,0, 11, Yr ~ N (Bt!mﬁﬂt) ?

where [B’tﬁ and (), are the one-period-ahead forecast of 3, and the variance-covariance matrix of
its mean square error, respectively, calculated by the Kalman Filter as:

ﬂt|t = ﬂ:}t—l + Qat—lX;Ft (Yt - Xtﬂ?\t—l)
Qe = U — U X P X4
F, = (X&5,,%+3)7. (26)

To make this scheme operational, one needs a consistent estimate of ¥, values for the hyper-
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parameters of the model (A and @), and initial values for the elements of €20 and 3. As we
saw in the time-invariant case discussed in the previous section, these may be obtained in many
different ways."

A Hierarchical Time-Varying SUR model

Parameter time-variation may be specified also in the context of the hierarchical framework
proposed by Chib and Greenberg (1995), based on an important result previously obtained by
Carter and Kohn (1994), by adding one stage to the hierarchy implicit in the model discussed in

the previous section.'

In this case, parameter time-variation is specified as follows:

Y, = X8, + e, gy ~ IIN,(0,%)
ﬁt = Mogt + Ct: Ct ~ Nnk (07 Do) (27)
et :atwl + My N NNm (OaDl)a (28)

where &, (,, and 7, are assumed to be independent. Compared to the model in section 3.2, it is
now 8 = 6, 4 = #,_, and M; = I. Then, the law of motion of 8, is specified as a random walk
without drift, but could be an AR(1). By substituting (28) in (27) and rearranging the resulting
expression we have:

By =081+

with
vy = Mom, + ¢ — Ce1s

which has the same structure as (24) except that the error term now contains a moving average
component of the first order, M A(1).

Assuming that 6, and D, are known and conditioning on {6,},_,, the conditional posterior
distribution of the remaining parameters can be easily derived. For instance, conditional on
{9t};f:0, B, ~ N (M,8;, D,), and its conditional posterior is obtained by combining this prior
with the likelihood (18). Proceeding in this way, the following conditional distributions can be

obtained: o
Bl v_gyy~ N (B ) (29)

13 We apply this model to the estimation of a system of reaction functions for four European
central banks under the EMS. See also Ballabriga et al. (1998) for a detailed presentation of the methodology.

14 See Canova and Ciccarelli (2000) and Ciccarelli and Rebucci (2002) for applications
of this procedure to the prediction of turning points in the business cycle of G7 countries
and to the analysis of the transmission mechanism of European monetary policy, respectively.
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2 gy~ W (S5 +T); (30)

Dy 6o,y ~ W (Dop+T); &)

where o )
B= 0 (D M0~ X2 y), Q= (D + X57X) T

T -1
Y= S+ Z (yt - Xtﬂ) (yt - Xtﬁ)lil )
t=1
T -1
D, = Do—l + Z (Br — Moby) (B, — Mogt)/:l :
t=1

The joint posterior distribution of {6,} conditional on the remaining parameters and the data can
then be obtained in two steps as shown by Chib and Greenberg (1995, pp. 349-350). First, by
A T
initializing {6;} | Y, v _, with the Kalman Filter, whose output {HW, Ryt Ft} . is saved for each
t—=
t.

ét\t = ét{t—l + K (ﬁt - Mo%t—l) ; (32)
Rt\t = (I - KtMo) Rt|t—1
Fo = Rufly
where
9t[t—1 = 9t—1]t—17

Ry¢-1 = Ry + D1,
Ly = A[oRﬂt—lM(/) + Dy,
K, = Rt\t—lMT_l

o” tlt—1-

And second, by sampling p({6;} | Y, v¥'_,) in reverse time order from

Oy ~ N(9T|T,RT1T>
Or1 ~ N (01 Rrt) (33)

b~ N (i R),
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where

0, = ét|t + Fi (9t+1 - ét|t)
R, = Rt[t - ERtH[tFtI-

Note that with this algorithm, we simulate {6, } from the joint distribution p(,, 61, ..., 01 | ¥_,),
rather than from its full conditional distribution 6, | 1_,. The latter simulation strategy produces
very slow convergence to the ergodic distribution because it requires adding 7' + 1 additional
blocks to the Gibbs sampler, a problem exacerbated as the dimension of 6, increases. In the former
case, instead, only one additional block is introduced in the sampler.

B. Nonnormal Data

The Bayesian framework discussed thus far can be easily adapted to take into account the
presence of outliers, or to model data coming form distributions with higher probability of
extreme observations than under the normal distribution—sometime called fat-tailed distributions
in the empirical finance literature. Being able to accommodate outliers or fat-tails is particularly
important in financial applications dealing with high frequency data, which are well known to
depart form normality.

In a Bayesian framework, the presence of outliers can be accommodated by replacing the normal
data model usually assumed by a fatter-tailed family of distributions for the error term and thus
the data, such as the t-student, or by using mixture models."”> A nonnormal data specification can
then be combined with alternative prior assumptions for the parameters of interest to obtain their
posterior distributions along the line discussed thus far.

Unlike the classical analysis of outliers, the Bayesian analysis makes no distinction between
methods that search for outliers—possibly removing them from the analysis—and robust
estimation procedures that are not vulnerable to their presence. Bayesian researchers characterize
outliers as observations coming form fat-tailed distributions, or high-variance periods in the
context of mixture models of time series, rather than extreme observations from a normal
distribution. As a result, these observations do not distort the point estimates of the population
moments. In addition, such a modeling approach is compatible with many of the prior
distributions for the parameters of interest seen in the previous sections, including the possibility
of time-variation.

To present these ideas more formally, consider the same hierarchical model discussed in Section
HI1.B, generalized to allow for fat-tails in the data as described by a t-student distribution for the

15 Mixture models are statistical model based on the combination of two or more distributions.

They are frequently used in situations in which the measurement of a random variable is

taken under two or more conditions, or where the population is known or assumed to consist

of subpopulations that follow a different, simpler model. For more details see, for instance, Gelman et al. (1995).
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vector of error terms:

Y, = XifB+e, g, ~1,(0,%) (34)
8 = M6+, ¢ ~ Nk (0, D,) (35)
f = Myp+n, 1~ Np (0, Dy) (36)

where ¢, (u, 0?) denotes a t-student distribution with location p, scale o, and degrees of freedom
v, v € (0, 00), determining the shape of the distribution.'®

As for the estimation of the model, the new specification requires only a small modification to
what discussed in Section II1.B. Specifically, the prior (37)-(38) in footnote must be added to
the hierarchical scheme (34)-(36) and the conditional distribution of o, must be added to the
Gibbs sampler. It is not difficult to show that, assuming v is fixed, the conditional distributions
becomes:

Blv_sY ~N(B,0); (39)

S Y S W (E s+ T) : (40)
01v_g,Y ~ N (A (D' Myp+ M,D;'8), Ar); (41)
DI ¢ Y ~W (Do, p+ 1) : (42)

o¢ | U g, Y ~Inv-x? (v + T, 5%) (43)

where

-1
B=0 (D;;lMoe +3 X (o3 Yt> . Q= (D;1 + Z X! (o2)™ Xt> ,
4 t

16 The t-student distribution can be interpreted as mixture model, i.e., a mixture of normal
distributions with a common mean and time-varying variance (in the case of a time series
regression) distributed as scaled inverse chi—squared distribution. For instance,

&y ~~ t,, (0, E)
is equivalent to
e ~ N(0,00%) (37)
oy ~ Inv-x?(v,1). (3%

Statistically, therefore, outliers may be interpreted as observations drawn from a distribution with

higher variance. Hence, the variance of the error term is heteroschedastic and the degree of heteroschedasticity depends
on the number of degrees of freedom v. In fact, as v approaches infinity, £; converges in

distribution to N (0, X), as E (o) tends to one and V (o) tends to zero.
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g

;71
5 [2*1 | T (= X8) (Y~ Xif) ]
Ar = (DY + MD;IM,)

b, -

o7 3505,

with
=+, - XB) T (Y - X)) /v

denoting the scale of the scaled inverse chi squared.

In practice, if the t-student aims at fitting a long-tailed distribution on a long series of observations,
then it is generally appropriate to include the degrees of freedom as an unknown parameter to be
estimated. If instead the t-student specification is chosen as a robust alternative to the normal to
control for outliers, then v can be fixed at an arbitrarily small value, but no smaller than prior
understanding dictates (see Gelman et al., 1995, page 350 for more details on this)."”

C. Regime Switching, Nonlinear Models, and Beyond

Regime-switching time series models are a popular device to model non-linear dynamic, following
the seminal contribution of Hamilton (1989). Shifts between two or more regimes can be easily
accommodated in the Bayesian framework discussed thus far.’® Canova (1993), however, has
shown that nonlinearities, nonnormalities and conditional heteroschedasticity may also be
modelled by a the kind of time-varying coefficient models (TVCs) discussed above. In particular,
he shows that a TVC model nests specifications generally used to characterize typical departures
from standard assumptions such as conditionally normal ARCH and ARCH-M models, or even
Hamilton’s regime switching effects. Interestingly, as we have seen in the previous subsections, a
TVC specification is rather easily estimated in a Bayesian framework.

The flexibility of the Bayesian approach does not end here and the modeling possibilities are
numerous. For instance, it is possible to specify a t-student prior for the parameters rather than
the error terms, thereby allowing for outliers in the parameters, while continuing to use a normal
data model. Sometimes, it is difficult to justify a priori the normality of the parameter vector,
especially if the VAR includes equations referring to different decision units, as in the case of a
panel VAR. Moreover, posterior inference is generally sensitive to the assumed prior, even when
the model fits the data well. For this reason, it may be useful to check robustness by assuming

17 See Ciccarelli and Rebucci (2002) for an application of a non-normal, TVC model to
the measurement of financial contagion. Similar models have been used by Sims (1999)
and Cogley and Sargent (2002) to study monetary policy issues.

18 See Kim (1994) and Chib et al. (2001a) for univariate applications and Chib et al. (2001b)
and Cogley and Sargent (2002), among others, for multivariate applications.
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alternative specifications for the prior distribution of the parameter vector, such as a t-student as
we discussed for the error terms.

Assume for instance that in (34)-(36) we change the assumption on the population structure as
B16,v,D, ~t,(M#b,D,).

As in previous subsection, the ¢-distribution can be written as a mixture of a normal and a scaled
inverse-x? as

B16,7,D, ~ N (M8,7D,) (44)
7 ~ Inv-x? (v, 1). (45)

The conditional posterior of 7 is then added to the Gibbs sampler as we added the conditional
posterior of o, in the previous section.

V. FORECASTING AND STRUCTURAL ANALYSIS

In order to compute out of sample forecasts, impulse response functions (IRFs) and forecast error
variance decompositions (FVDs), take the companion form of model (1) with no deterministic

components but the constant:

Y,=up+BY, ;+U, (46)
where
Y, u
Y1 0
Yt - . ’ l‘l': : b
B Y't—p—l 0
(npx1) (npx1)
[ By By --- By, Bp] c
I, 0 -0 0 ot
B = 0 I, 0 , U, =
; . : b
o 0 - I, 0 | (npx1)
(npXxnp)

Solving forward from period T, we can express the h-step ahead out-of-sample forecast at time T’
as:

h-1 h—1
Yrin=) Biu+B"Yr+> BUpny h=12 ... 47)
=0 j=0

Now, defining the n x np matrix J = [I, 0 ... 0] as in Litkepohl (1990, page 13) and using the
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fact that J'JU; = U, and that JU, = &,, we obtain the h-step ahead, out-of-sample forecast of

V.. .-
LT _h-
h—1
Yrin=JYp = C'h_l,u + JBhYT + Z QjET—‘h—j, (48)
j=0

where Co =1, C; = + 3% B;C; ; (i = 1,2, ..), B; = 0for j > p,and ®; = JBIJ".

Forecasting (conditional and unconditional), impulse response and variance decomposition
analysis are natural application of (48), where the first two terms add up to the expected value of
Yron (e, Yr(h) = Choyp+ JBYY = E Yoy | Yr, 8, Z)), while the last term is the forecast
error (Y., — Y7 (h)) with conditional variance equal to Z?;; b, Z(D;.

A. Unconditional Forecasting

There are two different ways to forecast future realizations of the vector of variables of interest.
If there are conditions or constraints on the future value of the variables or the shocks driving the
model, the forecast produced by means of (48) is conditional; if there are no such conditions, it is
an unconditional forecast. Here, we focus only on unconditional forecasts."

The unconditional forecasting function (Y7 (h)) is given by the first two terms in (43),
Yr (h) = Choipp + JB"Y 1. 49)

Some algebra manipulations show that the h-step ahead forecasting function may also be written,

recursively, as
Yr(h) = p+ BYr (h—1) + ... + ByYr (h —p) (30)

where Y7 (j) = Y, for j < 0. Point forecasts may now be computed in two ways.

First, by substituting in equation (50) estimates of 1 and B (! = 1, .., p) obtained from the mean
of the posterior distribution of 3:

Yi(h) =+ BYr(h—1)+..+ BYr(h—p). (51)
Alternatively, by defining ¥ = (3, X) and evaluating the integral
V= [ e ) p @ |Y)do (52)

where p (¢ | Y) denotes the posterior distribution of 1 and the forecasting function is averaged by
taking as weights the whole posterior density of the parameters and not just their posterior mean
as in (51).

If instead one is interested in forecasting the whole density of Y; (k) and not one just “one

19 On conditional forecasting see, among others, Waggoner and Zha (1998). Kadyiala and ‘
Karlsson (1997) evaluate the forecasting performance of most of the specifications discussed in the previous section.
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point”, i.€., one is interested in density forecasts, the following integral may be evaluated either
analvngallv or numerically by means of Gibbs sampler:®

p (Y (h) zmzfp(mm | Yo, 9)p(9 | Y) dd

The procedure is relatively simple For each draw of 9V, we draw Y(j)( h) from

P (Yt (h) | Yr, Sy After, say, M iterations of the Gibbs sampier these draws may be
regarded as draws from p(Y; (h) | Yz). A point forecast can then be obtained using the ergodic
mean of the empirical distribution.

B. Structural Analysis

Computation of unconditional forecasts is related to the calculation of IRFs and FVDs. But while
the reduced form is all we need for unconditional forecasting, structural VAR analysis requires the
solution of a joint estimation-identification problem. However, if the system is exactly identified,
the analysis remains relatively simple.”

For instance, take the model with time-invariant parameters and any of the prior assumptions
discussed above. Any such model may be seen as the reduced form of the a structural form in

which:
1= AA,

where A is an n x n non-singular matrix of contemporaneous correlations, &, = A v,
and v, is assumed normally and independently distributed with E [v, | Y;—5, s > 0] = 0 and
E vy | Yies, s > 0] = I, for all t. Equation (48) can then be re-written as

h—1
Yrop=JY7r=Chpu+ JB" Y7 + Z Vivripj (53)
7=0
where the n x n matrix U, = ®;A~ ! is the matrix of the j®-period-ahead impulse responses,

while the forecast error variance is then given by Z ST =30 Zh ; ®;a,a]®’; where a;
is the 4-th column of A~

Probability distributions of the responses to an impulse in the k-th structural shock may be
computed by making random draws for the k-th column of ¥; for periods j = 0, .., h, as explained
for unconditional forecasting. The mean response and the percentiles are then used to summarize
the posterior distribution of these statistics. Similarly a distribution for the contribution of the i-th
innovation to the forecast error variance of the h-step ahead forecast can be obtained by making

20 Density forecast is of great help when the researcher wants to compute turning point
probabilities, for instance, as in Canova and Ciccarelli (2001).

21 See Amisano and Giannini (1997) on the general issue of identification in VARs. For
a more complete Bayesian treatment of the calculation of impulse response functions in structural VAR models
see Koop (1992). For the case of over-identification in a Bayesian framework see Zha (1999) and Sims and Zha (1998).
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draws of S~ a2/, as a proportion of the total forecast error variance.
7=0 *J H j prop

In the case of overidentification, the mapping between X! and A is not one-to-one. This means
that we cannot obtain the posterior distribution of A while computing the posterior distribution of
Y, given the chosen identifying scheme. In case of overidentification, as explained in Sims and
Zha (1998), a joint prior distribution on the parameters governing contemporaneous and lagged
interdependence between the variables of interest must be specified, and the posterior distribution
of the parameters governing contemporaneous correlations becomes nonstandard. In this case,
one needs to take a second-order Taylor expansion around the maximum of the likelihood to

obtain the posterior distribution of these parameters.*

VI. AN APPLICATION: ESTIMATING A SYSTEM OF REACTION FUNCTIONS

In this section, by drawing on the work reported by Ciccarelli and Rebucci (2002), we apply some
of the results previously reviewed to the estimation of a system of monetary reaction functions of
the type discussed and estimated by Clarida, Gali, and Gertler (1997).

Researchers estimate central bank reaction functions either to investigate the behavior of the
monetary authorities or to obtain measures of the expected and unexpected component of
monetary policy. In the empirical monetary policy literature, examples of use of estimated
reaction functions for both purposes abound. For instance, in a seminal contribution, Clarida and
others (1997) estimate the reaction function of the largest advanced economies’ central banks to
compare their behavior; Dornbusch and others (1998) estimate a system of reaction functions for
European central banks to compare the transmission mechanism of monetary policy across these
countries; Sims (1999) and Sargent and Cogley (2002) revisit the U.S. postwar monetary policy
history by estimating a reaction function for the US Federal Reserve with methods similar to those
reviewed in this paper; finally, Ciccarelli and Rebucci (2002) use the system of reaction functions
presented in this section to investigate how the transmission mechanism of European monetary

policy has changed over time.

More specifically, we consider four central banks in the European Monetary System (EMS)—
Germany, France, Italy, and Spain—which are the four largest economies currently in the
European Monetary Union (EMU), accounting for about 80 percent of the euro-area GDP.> As
these countries’ commitment to the EMS, and hence their monetary policy regime, has changed
over time, we let also the model parameters change over time. In addition, as short-term interest
rates may reflect not only monetary policy actions and surprises but also exogenous shocks to
exchange rate risk premia and money demand shocks not fully accommodated by the money
supply, we assume that the error terms are t-distributed.

Therefore, we estimate a time-varying coefficient system for nonnormal data by adapting the

22 See Zha (1999, page 300) for details.

%3 There is nothing in our empirical framework that would prevent us to include more than
four countries except additional computing costs.
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models discussed in Sections IV.A and VI.B. Specification, identification and estimation of the
particular econometric model used are presented in the first three subsections. The estimation
results are reported and discussed in the following one.

A. Specification

The behavior of the four European central banks considered is modeled by the following
time-varying structural VAR:

Ai(L)R; = B; (L)W, + D, + Uy, (54)

where R, = [rl,--- %' is a (4 x 1) vector of monetary policy instruments, W, = [w;,--- , w;]’

is a (4 x 1) vector of monetary policy final objectives and exogenous variables, A, (L) and B, (L)
are time-varying polynomial matrices in the lag operator L, with lag length p; and p, respectively,
and D; is a (4 x 1) vector of constants. Here, U; = [ul,--- ,ut]’ is a (4 x 1) vector of monetary

policy shocks such that:

EU,| Z,] = 0, foralltands > 0; (55)
EUU[|Z,s] = I, foralltands > 0;
E[UU!]] = 0, forallt#s,

where 7, contains lagged R; and contemporaneous and lagged W;, and E denotes the expectation
operator and that.

A short-term interest rate is assumed to be the monetary policy instrument. Consistent with the
specification of a standard VAR for the analysis of monetary policy in open economy, in w;;
we include contemporaneous and lagged inflation (), output (y), and lagged nominal exchange
rate (e) in percent deviation from its target (7*, y*, e*, respectively). In addition, we include a
contemporaneous and lagged index of commodity prices (cp), the U.S. federal fund’s rate (rf'5)
and the lagged value of a broad monetary aggregate (m). Commodity prices and the US money
market rate are included to control for external shocks, while monetary aggregates are widely
believed to have been monitored closely by most European central banks throughout the period
considered. Thus,

Wiy = [(ﬂ-i:t - WZ‘)’ ()li,t - y:)7 (eit—l - 82‘)7 mst—1, CPt, Tgs], fori = 17 4

All data used are from the International Financial Statistics database of the IMF. As a proxy for
the short-term interest rate, following Bernanke and Mihov (1997) and Clarida, Gali, and Gertler
(1997), we use the money market rate. Output is measured by an industrial production index.
Inflation is measured by the annual change in the consumer price index. We use the bilateral
exchange rate vis-a-vis the deutsche mark (DM) for France, Italy, and Spain, and the DM/U.S.
dollar rate for Germany. The commodity price index and the monetary aggregate are entered in
first-difference. The monetary aggregate chosen is a seasonally adjusted M3 series.** The targets

24 All variables are transformed in natural logarithm so that estimated coefficients can be
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central parity vis-a-vis the DM.?

The specification chosen imposes very few a priori restrictions on the system of reaction functions:
all parameters in A, (L) and B, (L) are unrestricted and can vary over time, including those
governing the contemporaneous causation among short-term interest rates.”® Leaving B, (L)
unrestricted allows the behavior of the central banks considered to change during the sample
period, letting the data reveal which objectives they were actually pursuing in each period. For
instance, the Spanish peseta joined the EMS only in 1989, the Italian lira has been floating more
or less freely from September 1992 to November 1996, and the fluctuation bands of all three
currencies vis-a-vis the DM have changed several times during the period considered. Even the

Bundesbank’s focus might have shifted away from strictly domestic objectives, after the early
years of the German unification, in the run up to the EMU. It is evident that, if the policy changes
and possible outliers are not accounted for by the estimated parameters of the system of reaction
functions, they will end up in the estimated residuals, thereby potentially undermining their
interpretation of well behaved (i.e., white noise) policy innovations as assumed in (55).

Leaving A, (L) unrestricted allows for lagged interdependence among short term interest rates
of different countries as well as for varying degrees of interest rate smoothing over time. In
addition, as we shall see below, our prior assumptions on the matrix of contemporaneous relations
among the interest rates considered (i.e., the matrix A;(0)) allow for the possibility that there are
exchange rate risk premiuvm shocks and money demand shocks not fully accommodated by money

supply possibly resulting in large outliers in U;.

Nonetheless, we do impose some lag-length restriction by choosing p; and p, based on the
Schwarz (BIC) criterium and ex post misspecification tests on the estimated residuals. While
the BIC criterion suggests to set p; = 6 and p» = 1, we find that our residuals pass all
misspecifications tests using p; = 2 and p, = 1 (see below). Therefore, to save computing time,

the final results are based on the shorter lag structure.

B. Identification

Identification of (54) may be achieved through exclusion restrictions on the coefficient matrix
A;(0). The specific scheme used exploits the Bundesbank’s presumed leading role under the

interpreted as elasticities. For interest rates we take the natural logarithm of the gross rates.

25 The exchange rate gap for Italy and Spain is set to zero before the Spanish peseta joined

the EMS and during the period in which the Italian lira was floating following the 1992

ERM crisis. We compute the inflation and output target also by taking deviations from the

German inflation rate and by using the HP filter for the output series finding similar results available on request.

26 Note however that the relative tightness of the prior distribution given on the elements of A;(L)
and B, (L) distinguishes between own and other countries’ monetary policy instruments (the endogenous variables),
between instruments and objectives and between own and other countries’ objectives (the exogenous variables).



-28-

EMS and the relative economic size of other countries.?”” More specifically, we place the German
short term interest rate first in the vector 72;, assuming that it affects other European interest rates
contemporaneously without being affected by them. We then assume that French and Italian
interest rates affect contemporaneously the Spanish rate without being affected by it. This is
plausible given that Spain’s GDP was considerably smaller than that of France and [taly during
much of the period considered. (Spain also joined the EMS only in 1989.) Finally, we assume that
the impact on France of an increase in interest rates in Italy is the same as the impact on Italy of
an increase in French rates.?

Formally, we need six restrictions on A,(0) to identify the model. The assumptions above provide
the six restrictions that identify the model exactly and translate into the following block recursive

structure for A, (0):

A (0) O 0
A (0) = | A (0) Ay (0) O (56)
Az (0) As(0) Ass(0) |,

where Aq; (0), As; (0), and Ass (0) are scalars, Ay (0) and A%, (0) are 2 x 1, and Ag, (0) 15 2 x 2.
The leader-follower behavior presumably characterizing the EMS imposes three zero restrictions
in the first row of this matrix. The smaller size of Spain relative to that of France and Italy allows
to impose two more zero restrictions in the last column of this matrix, while the last restriction is

obtained by imposing symmetry on A, (0).

The structural VAR (54), therefore, can be rewritten as:

A (0) 0 0 Ry
A (0) Axn(0) O Ry | =
A31(0) A32(0) Ass(0) |, \ a
An (L) Awn(L) A (L) Ry
An (L) Axn(L) Ax(L) Ry v | +
Ag1(L) Asa(L) Ass(L) .\ B

B (L) Bis(L) Bis(L) Wi Ui
+ | Ba1(L) B2 (L) Bas(L) Wo | + D¢+ U (57)
Bsi(L) Bsa(L) Bss(L) W Us;

where R;;, Wi, and Uy, are the German monetary policy instrument, objectives and shock,
respectively, Ry, Wo, and Us, (R3;, Wa;, and Us;) are the vectors containing the same variables for

France and Italy (and Spain).

t

#7  See Giavazzi and Giovannini (1988) and Kenen (1995) on the Bundesbank’s presumed
leading role in the EMS from the mid-1980s onward.

28 See Amisano and Giannini (1997, pages 166-67) for an example of identification by means of symmetry as assumed
here.
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C. Estimation

Bayesian estimation of (57) exploits its block recursive structure. Following Zha (1999), let k;
and G, be the total number of right-hand-side variables per equation and the total number of
equations in block j of (57), respectively, where the same set of variables enter the equations of
each block j. If we pre-multiply (57) by the (4 x 4) matrix

A (0) O 0
Aa(0)= 0 Ap (0 0 1,
0 0 Az (0) |,

and rearrange terms, the model can divided into three blocks:

Rji = Zjbj¢ + vj j=1,2,3 forall ¢t. (58)

Here, Z;; = diag [Zf’t, Zg',t, ey Zéj’t} denotes a (G; x k;G;) diagonal matrix whose elements
are the (1 x k;) vectors (Zg’t) containing all contemporaneous (in our case R;; in block 2 and 3
and Ry; in block 3) and lagged endogenous variables, exogenous and deterministic variables of
equation g inblock j forg = 1, ..., Gy; b = [5{,,5,6{,',“ ey 521_,4 denotes a (k;G; x 1) vector
whose (k; x 1) element (62,9 contains the parameters of equation g in block j (forg = 1, ..., G;);
and vj; = A (0) Uy..

We make the following prior assumption on v;; and A;}j (0):
vie ~ N(0,Teg),
E vy | Zs] = 0 fori# 7, all¢, and s > 0

with
Tt,jj = At_’jlj (0) A;]l_g (O)/ and At_ylg (0) = ,/O'thj_jl (0) .

Thus,
Ty = 055, with $,; = A;jl (0) Aj—j1 (0)'.

As explained in Section IV.B, this is equivalent to assume that v;;, ~ ¢, (0, X;;) , which in turn is
the same as assuming that

vie | o~ N(0,045) (59)

Tje ~ Inv-y? (v,1). (60)

This assumption is economically plausible because it allows for the possibility that there are other
shocks in addition to money supply shocks, such as exchange risk premium and money demand

shocks not fully accommodated by monetary authorities, that may possibly result in large outliers
in U, potentially distorting our estimates.?

29 By imposing an autoregressive structure on 0 ;¢ (or its log) instead of assuming a simple
t-student distribution for the error term we could specify a stochastic volatility model such
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The other prior assumptions on the model’s parameters generalize those introduced by Zellner
(1971, Chapter 8) to take into account the presence of time-varying coefficients: a time-varying
Minnesota prior (e.g. Doan, Litterman, and Sims, 1984) for the slope coefficients (6;;) is
combined with a diffuse prior on the variance-covariance matrix of the residuals (¥;;) and the
assumption made for the time variation of the error term (o ;;) with prior independence.” Thus:

p (856, 55, 05) = p(656) p (B55) 0 (04t) 4 (61)

where

D)

—(G;+1)/2
p(Sy) o |8y 7GR
b0 = Pibj1+ (I —Pj) 6o N ~ N (0,9;),
2
o ~ Inv—x*(vjl).
Here, P; is a (Gk; x G;k;) matrix governing the law of motion of 6;;, do; is the unconditional

mean of &;,, ©; governs the time variation of §;, and 7, is assumed to be independent from v;,.

Now, denoting with RjT the sample data for each block j of (58), the pdf of the data,
L(RY| Zj;,64t,%44,04) , conditional on the exogenous variables, the initial observation, Rjo,
and the parameters of the model (6;; and ¥;,) is proportional () to:

_ 1 _
P e exp ) Z (Rje — th5jt)l (05:%55) ' (Rjt — Zjtbj) | - (62)

t

The posterior distribution of Ej_jl conditional on the entire history of §,, for t = 0, ...T (denoted
{8;:1). o1, and the data, is easily obtained combining (62) with p (¥;;) as the following Wishart
distribution with 7" degrees of freedom and scale matrix S (Zha, 1999, p. 299):

Zj_jl [ {65t} .04, R]-T, Rjy~W (T —G; —1,5), (63)
where »

S= > (Rj— Ziebyn) 0je (R — Zebs0)

t

The joint posterior distribution of {§;,} conditional on ¥;;, 0, and the data is obtained as
discussed in section 4.A. Specifically,

6jt | Ejjyajta Rf, RjO ~ N (Sjt}ty—ﬁjtlt) , (64)

where Sjtlt and ﬁjtlt are one-period-ahead forecast of §;; and the variance-covariance matrix of its

as that used by Cogley and Sargent (2002) or Uhlig (1992). However, the prior assumption chosen is sufficient to model
temporary, non persistent shifts in the conditional variance of v;.

30 See the Normal-diffuse case above.
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mean square error, respectively, calculated by the Kalman Filter as in (26).
The conditional posterior distribution of ¢ is similar to (43):

o0 | {651}, %55, BY Ryjo ~ Inv=x? (v; + T, 57) (65)
where
(v + Ryt — Zu650) S5 (Rje — Znb 1))

Vj

82_
=

Given (63), (64) and (65), and initial values for P;, ®,, Qjo, and 3]0, the marginal posterior
distributions of ¥}, {65} and oj; can then be obtained from the Gibbs sampler by drawing
alternately from these conditional distributions. Here, note that, given the marginal posterior
distribution of o, and X;;, we can recover the posterior distribution of A ;; (0), and thus also the
posterior distribution of the structural residual U, since the matrices A;; (0) are exactly identified

and thus linked to X;; by a one-to-one mapping.

As explained in Section III. A, we define P;, @, Qjo, 5 ;0 in terms of few hyperparameters and then
maximize the likelihood of the data as a function of this smaller parameter set to obtain numerical
values that are then fed into the Gibbs sampler. More specifically, Qjo and 3j0 are exactly as
Qyand 3, in section 3.1.1, while the matrices P; and ®; are defined as:

]Dj = dzag (le, IDQGJ)
‘Pj = d’LCLg (ijl, ceny (DjGj) ng

where P;, = diag (7s ) are (k; x k;) matrices with ms , controlling the coefficient of the law of
motion of each element of 6,4, and ®;, = diag (77 ,) are (k; x k;) matrices with 77 ; controlling
the variance around these values actually introduced in the model, for g = 1, ...G;. Finally, for all

J we setv; equal 5.

Given the values of the model hyperparameters, (32) is run. Then the Gibbs sampler starts
iterating, switching between (63), (64) and (65) and taking the estimated values of 74, ..., mg as
given. The Gibbs sampler iterates 5000 times yielding 4000 draws from the joint and marginal
posterior distributions of the parameters of interest after discarding the first 1000 draws. All the
numerical integrations and the statistics reported are based on these last 4000 draws.

D. Results

In this section we report the estimation results: the estimated reaction function residuals and
parameters derived from (57) for each country considered. The posterior median of the estimated
residuals are reported in Figure 1. The posterior median of the estimated parameters together with
the first and third quartile for each estimated reaction function are reported in Figures 2-5, while

31 Note that as the first and third blocks of the model contain only one equation, (63) becomes
an inverted gamma for j = 1.
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Figure 6 reports the posterior median of the error variance. The sample period is from January
1980 to December 1998, but the reported results are from February 1981 to December 1998
because 24 observations are used to initialize the estimation procedure. In Table 1 we also report
the estimated hyperparameters (with the same notation is as in Section 3.A).

Table 1. Estimated Hyperparameters

Germany  France [taly Spain
m | 09782 0.9922 0.9328 0.9814
T 1.0 1.0 1.0 1.0

w3 | 0.3039 0.2075 47.0987 0.0668
Ty | 6.8168 10.659 6.3644 0.9099
75 | 363.376  8.89¢-003 377848.0  136.187
g | 0.2183 27086  1.19¢-005  2.4612
77 | 4.52e-007 4.61e-009 3.22e-008 9.36¢-006
s | 0.9849 0.9429 0.9952 0.9673

The estimated hyperparameters are fed into the Gibbs sampler, affecting the prior assumptions
actually used in estimation, and thus also our posterior estimates of the model residuals and
parameters. Therefore, a few remarks are in order regarding the estimated hyperparameters in
Table 1. First, without loss of generality, to economize on free hyperparameters, we assume
that the tightness on the coefficients of the lagged endogenous variables (7,) is equal to 1 (as
suggested by Doan, 2000, Chapter 10). Second, time variation, as controlled by 77, does not
appear to be a major feature of the data, as will also be discussed below. Third, the prior mean of
the coefficient on the first lagged endogenous variable (1) is estimated to be close to one for all
countries, as expected. Higher order lags, decay rather quickly in the case of Germany, France
and Italy, but less so in the case of Spain (r4). Fifth, overall parameter uncertainty, as controlled
by 76, seems higher in the case of Spain and France than Italy and Germany, meaning that the
posterior distributions should be more concentrated in the latter cases. Finally, we note that g is
very close to one for all countries considered, meaning that the process for the coefficient vector
d;; 1s close to a random walk.

The estimated residuals may reflect potential model misspecifications and the model’s goodness
of fit. As we can see from Figure 1, they appear remarkably well behaved for all countries
considered: there are essentially no outliers and there is also little or no evidence of serial
autocorrelation and/or heteroschedasticity.
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Table 2. White Noise Test Statistics

Germany  France Italy Spain
Sample Mean | 0.0053 0.0062 -0.0301 -0.0044
(0.937)  (0.927) (0.639) (0.948)
Cum.Period. | 0.0816  0.0665  0.0617  0.0997
(0.0981) (0.0981) (0.0981) (0.0981)

Q@) 62035 14762 23753 53435
(0.184)  (0.831) (0.667)  (0.254)
Q(@®) 7.1921 83869  6.5074  12.186
(0.516)  (0.397)  (0.591)  (0.143)
Q(12) 7.8025 10430 164072 23.8513

(0.800)  (0.578) (0.173)  (0.021)
Arch(2) 27708 3.5593  7.1603  33.4121
(0.250)  (0.169)  (0.029)  (0.000)

This is also borne out by a battery of standard test statistics reported in Table 2. Table 2
reports summary and test statistics on the null hypothesis that the estimated posterior median
of the residuals follow a white noise process. The first two lines report the sample mean and
the p-value for the null hypothesis that this is zero, respectively. The second two lines report

a Kolmogorov-Smirnov statistics for the Durbin’s (1969) cumulated periodogram test.** The
following six lines report the Ljung-Box’s statistics for the null hypothesis of absence of serial
correlation of order higher than specified with their respective p-values. Finally, the last two lines
report Engle’s test for the null of absence of autoregressive conditional heteroschedasticity of
second order together with their p-values in brackets.

As we can see from this table, the null hypothesis of zero mean cannot be rejected for all
countries, and the absence of heteroschedasticity and autocorrelation is also clearly rejected
by all statistics for Germany and France. The results for Spain, and to a lesser extent also for
Italy, how some presence of ARCH effects and autocorrelation of order higher than 12, though.
Nonetheless, compared to other studies one notable difference is the absence of large outliers
in these residuals corresponding to the 1992 EMS crisis and the subsequent periods of financial
turbulence documented by Favero and Giavazzi (2002), among others. This is because these
episodes have been captured by the time-varying interest rate volatility introduced through our
prior specification, whose posterior medians are reported in Figure 6.

We can now focus on the estimated model parameters. Figure 2 reports the posterior median of
selected parameters of the Bundesbank’s reaction function together with a band containing 50
percent of the posterior distribution. Interestingly, the estimated parameters appear rather stable

32 This test cumulates the periodogram (i.c., the squared Fourier transform) over frequencies 0 to 7 and
scales it so as to have an end-value equal one. If the series examined is white noise, its
cumulated periodogram should differ only marginally from the theoretical periodogram of
a white noise, which is a straight line. Concretely, the table reports the maximum gap between the actual and theoretical
cumulated periodograms together with the approximate rejection limit at 5 percent significance level in brackets.
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over time, except for the structural break around the time of German unification, which does not
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Bundesbank reaction function in the run up to the monetary union (EMU).

These estimation results conform well to standard views of the behavior of the German central
bank: they show a high degree of interest rate smoothing or persistence, relatively low weight on
other European countries’ targets and a relatively large weight on the domestic inflation target,
with some weight also attached to U.S. variables. The coefficient of the German own lagged
interest rate remains close to 1 throughout the sample period. Among domestic objectives, the
inflation gap is by far the most important variable, although its effect is not estimated very
precisely. The U.S. interest rate and the DM/U.S. dollar exchange rate also have notable impacts.”
The coefficient on the U.S. federal funds rate, in particular, is comparable in size to that of the
domestic inflation target. The coefficients of other European countries’ targets are generally not
significantly different from zero, except for the output gaps and the Italian exchange rate gap. But
their magnitudes are quite small compared to other objectives and slightly declining over time.
The coefficients of foreign inflation gaps are clearly insignificant statistically.

The parameters of the reaction function of the Bank of France also conform well to what on¢
would expect for a follower country in the EMS (Figure 3): the German policy interest rate is
the most important variable, and exchange rate targets have a smaller (and slightly declining)
but significant weight. Domestic and other countries’ inflation and output targets, instead, have
weights which are either very small or not significant statistically. Only monetary growth appears
to have had a stronger role, but this declined markedly over time.

The results for Spain, and to a lesser extent Italy, are consistent with the view that the Bank

of Spain and the Bank of Italy were less constrained than the central banks of other European
countries by the EMS (Figure 4 and 5). The Bank of Spain, in particular, appears to have been
the least constrained among the countries considered. Both reaction functions show a much
smaller and insignificant weight attached to the German contemporaneous rate and somewhat
larger weights on output gaps compared to France. Interestingly, as in the case of France, the
coefficient of the German exchange rate appears to have declined significantly after 1992. The
reaction function of the Bank of Spain, in particular, also shows more instability, consistent with
Spain’s later entry in the EMS. The weight attached to monetary growth in Italy (Spain) is also
smaller (larger) than that in the French reaction function. The weight on the domestic output gap
affects Spanish short-term interest rates to a much greater extent than in France or even Italy, with
an impact comparable to that of the German interest rate. Finally, interest rate persistence is the

smallest in Spain.

Overall, these results show how difficult it would have been to choose a restricted and yet uniform
econometric specification to describe the different behavior of the central banks considered. The
fact that we find relatively “clean” estimated residuals then confirms that most of the behavioral
differences across countries and over time are well captured by the adopted econometric

33 Note that an increase in the exchange rate gap denotes a depreciating movement.
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specification for the system of reaction functions studied.

VII. CONCLUSIONS

In this paper we have reviewed recent developments in the literature on Bayesian VARs and have
discussed how to apply some of these results with an application to the estimation of a system of
nonetary reaction functions. olai’tii“lg from the generax Dayc“:Sia.‘l‘l p ‘plc appheu to the concrete
case of VAR estimation, we have described several prior dlstrlbutlons and some useful extensions
of the basic model, including nonnormal data, nonlinear models, and time-varying coefficients
models. In all cases analyzed, we have provided expressions for the posterior distributions, either
analytlcally or numerically computed. Besides its 1nterest1ng retrospective economic content,
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the application presented showed how flexibie the Bayesian approach might be in deali
complex dynamic economic problems.
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