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Abstract 
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This paper studies asymptotically the bias of the fixed effect (FE) estimator induced by cross- 
section heterogeneity in the slope parameters of stationary vector autoregressions (VARs). 
The paper also compares the FE, the mean group estimator (MG), and a simple instrumental 
variable alternative (IV) in Monte Carlo simulations. The main results are: (i) asymptotically, 
the heterogeneity bias of the FE may be more or less severe in VAR specifications than in 
standard dynamic panel data specifications; (ii) in Monte Carlo simulations, slope 
heterogeneity must be relatively high to be a source of concern for pooled estimators; 
(iii) when this happens, the panel must be longer than a typical macro dataset for the MG to 
be a viable solution. 
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1. INTRODUCTION 

Vector autoregressive systems (VARs) are a useful device to summarise and analyse the dynamic 
interaction of a given set of variables of interest as originally proposed by Sims (1980). When 
there are several decision units to be considered (i.e., several agents, countries, or sectors)On the 
one hand, the possibility of pooling them in a single system emerges. Pooling different decision 
units is attractive because it increases the number of degrees of freedom available and, potentially, 
the efficiency of the estimates so obtained; thus, it potentially also reduces the risk of overfitting.’ 
On the other hand, pooling different decision units poses inferential problems with regard to the 
representative or typical unit: it may introduce an aggregation bias, if the slope parameters of 
individual regressions are heterogeneous, which is called “heterogeneity bias” in this literature. 

We can think of a VAR estimated with panel data (a Panel VAR or PVAR) as a standard 
dynamic panel data model (DPM) where no regressor is strongly exogenous. 

Much of the existing literature on DPMs is focused on the problem of pooling heterogeneous 
units with respect to the unconditional mean (the intercept of the regression equation), and/or the 
unconditional variance (the variance of the error term in the regression equation), of the variables 
of interest. The problem of pooling heterogeneous units with respect to the time series correlations 
of the variables of interest (the slope parameters of the regression equation) has started to be 
investigated only more recently by Robertson and Symons (1992) and Pesaran and Smith (1995). 
Pesaran and Smith (1995), in particular, have shown that if the slope parameters of a standard 
DPM differ across individual units, then a number of commonly used pooled estimators give 
rise to inconsistent estimates of the true cross sectional mean of the parameters of interest, even 
when both the number of individual units and time periods are large. To solve this problem, 
they propose an arithmetic average of the time series estimates of the parameters of interest, and 
indeed they show that this estimator, called the mean group estimator, is consistent. Furthermore, 
Pesaran, Smith, and Im (1996) give Monte Carlo simulation evidence showing that the bias in 
conventional estimates induced by the presence of slope heterogeneity may be substantial in finite 
samples. 

This paper extends some of the results for heterogeneous DPMs of Pesaran and Smith (1995); 
Pesaran, Smith and Im (1996) and Hsiao, Pesaran, and Tahmiscioglu (1997) to a PVAR 
specification. 

In the broader context of the existing theoretical literature on PVARs, the analysis carried out 
in the paper is limited in scope. First, consistent with the rest of the literature, I shall restrict my 
attention to exactly identified VARs in the time series sense and hence focus on the estimation 
of the reduced-form of the mode1.3 Second, I shall assume that slope parameters are constant 

’ The risk of over-fitting is underlined by proponents of a Bayesian approach to estimation 
of VAIis such as Doan, Litterman, and Sims (1984). 

3 On the difficulties arising fi-om the interaction between estimation and identification issues 
in dynamic panel simultaneous equation models, see Krishnakumar (1996). 
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over time; consider only stationary systems; and, unlike most of the existing literature, focus only 
on the estimation of the short-run dynamics of the system as Hsiao, Pesaran, and Tahmiscioglu 
(1997) do.4 Third, I neglect in part interdependence between individual units by assuming that 
this can be satisfactorily modelled through the inclusion of common, exogenous, and observable 
variables in each individual VAR as assumed.j Finally, motivated by typical macroeconomic 
applications such as those using the Heatson and Summers (199 1) dataset, as is most of the 
literature, I consider only long panels and pay particular attention to unfavorable panel dimensions 
in the Monte Carlo simulations. Nonetheless, the reduced-form model studied in the paper may be 
applied to the analysis of the dynamic impact and the relative importance of different shocks-as 
for instance done by Rebucci (1998)-or the analysis of Granger causality issues-as for instance 
done by Carrol and Weil (1994)-when either economic theory or prior analysis of individual 
time series indicates that stationarity is assured.” 

Within the boundaries of these limitations, this paper studies the determinants of the heterogeneity 
bias of the fixed effect estimator (FE) in a model in which the regressors are not strongly 
exogenous, because either weak exogeneity or Granger causality fails, and studies the finite 
sample properties of the FE, AJG, and a simple instrumental variable estimator (IV), by means 
of Monte Carlo simulations, in a model in which both weak endogeneity and Granger causality 
fail. 

The main results of the analysis are that (i) asymptotically, the heterogeneity bias of the FE may 
be more or less severe in VAR specifications than in standard DPM specifications; (ii) in Monte 
Carlo simulations, slope heterogeneity must be relatively high to be a source of concern for pooled 
estimators; (iii) when this happens, the panel must be longer than a typical macro dataset for 
the MG to be a viable solution. The main implication of the analysis is that empirical Bayesian 
estimators such as those proposed by Hsiao, Pesaran and Tahmiscioglu (1997) and Canova and 
Ciccarelli (2000) seem more promising alternatives to estimate VARs with heterogeneous panel 
data. 

4 For surveys on the now large literature on nonstationary DPMs and testing for unit root and cointegration in panel 
data, see Banerjee (1999), Phillips and Moon (2000), and Simith (2000). For extensions 
of some of these results to a general VAR specification, see Larsson et al. (1998 and 1999) and Banerjee et al. (2000). 
Note, however, that these latter contributions bring the analysis back to a pure time series 
dimension, thus essentially defeating the purpose of using panel data estimators to improve efficiency and hence reduce 
the risk of overhtting. See Holtz-Eakin et al. (1988) for a framework in which parameters 
may change over time, and hence stationarity is not required, but must be homogeneous across-section. 

’ Both seminal contributions of Pesaran and Smith (1995) and Phillips and Moon (1999) assume 
cross-section independence. To my knowledge, Robertson and Symons (2000) were the first in this literature to develop 
a seemingly unrelated regression model allowing for some, limited cross-section interdependence for panel data 
sets of non trivial sectional dimension. Alternative approaches to modeling cross-section 
interdependence typical of macro data sets include dynamic factor analysis pioneered by 
Forni et al. (2001) and numerical Bayesian estimation of large time series VARs proposed 
by Canova and Ciccarelli (2000). But these contributions use rather different technologies than those used in this paper. 

G See Boyd and Smith (2000) and Attanasio and others (1999) for comparisons of the estimators 
analysed in this paper with actual data. 
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The paper is organised as follows. Section II spells out the model and discusses alternative 
estimation strategies. Section III studies the bias of the FE estimator asymptotically. Section IV 
sets up the Monte Carlo experiment and reports the finite sample results. Section V concludes. 
The derivation of the asymptotic bias of the FE estimator in the most general case considered and 
the analysis of one of the two special cases considered are reported in the appendix. The GAUSS 
code for the Monte Carlo exercise is available on request. 

II. THEMODELANDALTERNATIVEESTIMATIONSTRATEGIES 

A. The Model 

Consider the following general VAR describing the behavior of the it” individual unit: 

with 
i-l,... N; t = I!. . . T; s = 1,. . . S and S 5 T. 

Here, xt, and d’, denote, respectively, a (11fzl) and (Kzl) vector of individual and time specific 
and common-across-individuals observable variables of interest; Aai,(L) and x’,,,(L) are (ngzn/f) 
and (MzK) time-varying matrix polynomials in the lag operator L (e.g., Lq:t = y’t-l), of order 
p and q, respectively; Q: is a (n/1%1) vector of individual specific fixed or random e&e&; E& is a 
(AJzl) vector of error terms with E$ N iid(0; C,J; and S denotes the number of sub-samples. 

This is a general heterogeneous PVAR in that, in addition to unconstrained contemporaneous 
and lagged individual units’ interdependence, it allows for the maximum degree of parameter 
heterogeneity, places few restrictions on the data as far as stationarity and exogeneity is 
concerned, and is potentially suitable for forecasting as well as for inference and policy analysis. 
Unfortunately, however, this model cannot be estimated in most commonly encountered contexts 
without imposing additional restrictions. 

In the rest of the paper, as anticipated in the introduction, I shall make the following assumptions, 
for all i: 
(i)The VAR in (1) is a covariance-stationary, mean square ergodic process and its parameters are 

constant over time. 

(ii)Individual units are not interrelated except for common exogenous factors; thus, CE, Ai: (L) = 
A:‘(L) with E(E/~E~) = (I @  C,), where EL = [ ~‘1)~ . . . 4&t ] ‘, E denotes the expectation 
operator with respect to the distribution of E{, I is an identity matrix of conforming dimension, 
and @  denotes the Kronecker product. 

(iii)In addition, following Pesaran and Smith (1995), I assume that & is a vector of constants to be 
estimated (a vector of pure fixed effects) and Ai varies across individual units according to the 



-6- 

random coefficient specification: 
A: = A’ + rj;, (2) 

where A’ is a (MxM) constant matrix and 7: is a (MzM) random matrix distributed 
idependently of E$ and Y$ with zero mean and constant variance-covariance matrix equal 
to Q--i.e., vec(q!,) N iid(0, 0). Thus, individual specific effects are fixed while the slope 
parameters of the VAR vary randomly across section and are distributed independently of the 
regressors and the error terms. 

I assume further and without loss of generality that p = 1 and M = 2 and XI,(L) = 0 for all i.’ 
Then, model (1) becomes the following stationary, bivariate heterogenous PVAR of first order: 

i=l,... N; t = 1;e.T; 

where 

It is now easily seen that Pesaran and Smith’s (1995) DPM may be interpreted as a restricted 
heterogenous PVAR in which, in addition to the hypothesis (i)-(iii) above, yi = 0 and the 
“correlation” between the variables considered has been organized as “economic causation” from 
G.t to qt. Pesaran and Smith (1995) specify the following heterogeneous dynamic panel data 
model (DMP): 

with 

where q!, = [ 7: q~% ]’ has zero mean and constant variance-covariance matrix (0) and is 
distributed independently of Y$ = [ ziZt xist 1’ and z& = [ U& uzt ] ‘, E(u~),u$ = z$, 
E(u~,u$ = tf, and E(u~~,u~,) = E(u$L$ = 0.8 If we multiply (3) by the inverse of the 

’ Assuming p = 1 and M = 2 is certainly not restrictive for the purpose of comparing 
results with the DPM literature. In addition, a VAR of order p may always be represented 
in companion form as a VAR of order one. As shown by Abadir et a. (1999) however, 
the number of variables entering a VAR may not only affect the efhciency but also the biases of the estimator used. 

’ Here, the process for xi,t does not need to be univariate and its lagged values can be 
included in the equation for xi,t without affecting the properties of the parameter estimates. 
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unique matrix @ ‘i such that Ci = @,i$$@‘, and drop (without loss of generality) the term ,Bixi,,-l in 
the equation for z+ above, where 

which is exactly the same as (4).9 Thus, the key assumption distinguishing (3) from (4) is that, in 
the latter, xitt is weakly exogenous for the estimation of xi, ‘pi and zi:t does not Grangev-cause 
xi.t-i.e., xiTt is strongly exogenous for the estimation of pi and xi implying that the process of zi,t 
and xi)t can be estimated separately.‘O 

B. Alternative Estimation Strategies 

Suppose one is interested in estimating A (or X and p) the cross-sectional average of Ai (or Xi 
and ‘pi, respectively). When T is large enough to estimate individual time series regressions 
separately, this can be obtained in three different ways.” First, by stacking the data and using 
pooled estimators such as the FE estimator (sometime called also least squares dummy estimator, 
within estimator, or covariance estimator), the random effect estimator (RE), or instrumental 
variables-type estimators (IV), possibly correcting for cross section heteroschedasticity in the 
variance of the innovations Ui t if necessary. Second, by averaging data across section and 
estimating an aggregate time series regression (ATS). Third, by estimating individual time series 
regressions and averaging these estimates across section or groups, a procedure called mean group 
(MG) estimation by Pesaran and Smith (1995).” 

If the panel is not only long but also homogeneous in the slope parameters-i.e., 7: = 0 for all 

s As known, this decomposition exists always but is not unique and depends on the variables’ 
order. The complications involved in moving from a standard DPM specification to a one 
in which explanatory variables are only weakly rather than strongly exogenous are discussed also by Kiviet (1998) 

lo Pesaran and Smith (1995) actually assume that CT+ is strictly exogenous (i.e., is independent of & at all lads and 
lags) for the estimation of Xi and qi in the equation for ziTl, This implies that parametrizing 
the equation for Z+ differently, as for instance by inverting the transformation discussed 
in the previous sub-section, weak exogeneity of xi,t for the estimation of Xi and pi in the equation for Zi.t could fail. 

I1 There is also a fourth method that is averaging the data over time and estimating an 
aggregate cross section regression. While this estimator (sometime called between estimator) has 
better asymptotic properties than pooled or aggregate time series estimators when the panel 
is heterogeneous, it does not allows for estimation of the model’s short run dynamic, and thus is not considered here. 

l2 The average of time series estimates may be weighted or unweighted, in principle. In the paper, I used 
only unweighted averages. The weighted average of the time series estimates is sometime called ‘Swamy estimator’, as 
was originally proposed by Swamy (1970) for the estimation of static models with randomly varying slope parameters, 
or empirical-Bayes estimator, as it can be interpreted as a ‘mixed estimator’ in the sense of Theil(1971). 
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i-then all three estimation procedures yield consistent estimates of the parameters of interest for 
large 2’ and fixed N: even though they are all biased in finite samples because of the presence 
of the lagged dependent variable.13 In this case, the choice among alternative estimators ought 
to be dictated by efficiency considerations based on assumptions on the nature of the individual 
specific effects (a:) the initial condition of the data (Z~,~ and z~!~), and the particular dimension of 
the dataset at hand. 

The FE estimator is asymptotically equivalent to the RE iestimator in terms of efficiency, 
but since the latter is inconsistent when the individual specific effects are correlated with the 
regressors even for large T, the former is generally preferable. Simple IV-type estimators and 
generalized method of moments-type estimators (GMM) are consistent also for large N and fixed 
T.‘” In this case, GMM-type estimators are more efficient than simple IV estimators, but they 
have been shown to perform worse when 7’ is relatively large because of overfitting problems. 
Therefore, the question of how large should be T relative to N to prefer the FE estimator 
to IV-type of estimators in long, homogeneous DPb1s remains open.” In addition, the FE 
estimator and IV-type estimators have recently been shown to be asymptotically equivalent in 
terms of efficiency when both N and T are large, but their asymptotic biases depend on the rates 
at which N and T increase in this case.16 

If the panel is long and heterogeneous in the slope parameters, Pesaran and Smith (1995) have 
shown that pooled estimators (the FE estimator as well as IV-type estimators) and the ATS 
estimator generally yield inconsistent estimates of X and 9, regardless of the time dimension of 
the panel, while the MG estimator is consistent for both N and T la.rge.17 

To see why pooled estimators cannot be consistent, substitute (5) in the first equation of (4). The 
model becomes: 

It is now evident that the new error term, wft, is contemporaneously correlated with the regressors 
and also autocorrelated to extent to which the regressors are autocorrelated. Similarly, averaging 
(4) across section (and denoting simple averages with over-bars), shows that the new aggregate 

l3 See Nickel (1981) and Anderson and Hisiao (1981 and 1982) on the FE and simple 
IV-type estimators; see Pesaran and Smith ( 1995) and the references quoted therein on the ATS estimator. 

The literature on short, homogeneous DP3fs is vast and reviewed in any textbook on panel data analysis. 

See Judson and Owen (1999) for Monte Carlo simulation evidence on the relative performance 
of FE and IV-type estimators in relatively long, homogeneous panels. 

I6 See Arellano and Alvarez, (1998) on this point. 

l7 See Hsiao, Pesaran, and Tahmiscioglu (1999) for alternative Bayesian estimators when 
the panel is not only heterogeneous in the slope parameters, but also short. 
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error term is not independent of the aggregate regressors: 

Pesaran and Smith (1995) argue also that standard corrections for error autocorrelation are 
unlikely to solve this problem given the structure of the composite error terms (w$ and ?i?f). 
Similarly, they show that IV estimation can work only in very special cases. 

More specifically, they study the heterogeenity bias of the FE estimator and show that, when 
there is only one source of slope heterogeneity, the probability limit of xFE and FFE is: 

(7) 

where 
@ = (wf/t1”) (1 - p’) (1 - xpq + (1 - A”/?) I9 + (1 - p’) p. 

The size of this bias depends upon: (i) on the mean coefficients X1 cp, p; (ii) the v_ariance of ‘pi, 
denoted 0; (iii) and the ratio (z$/u;), with FFE always underestimating cp, and XFE over or 
underestimatimating X depending on wether p is positive or negative. The bias disappears only if 
p = 0 or B = 0, or if X approaches one from below when p # 0 and 6 # 0. Moreover, 

plim(XFE) = 1 plim(G,,) = 0, 
P+l P---l 

irrespective of the true values of X and cp, 

In the case of a VAR specification, the A4G estimator is the natural benchmark because it is 
consistent under both heterogeneity and homogeneity, even though it could be less efficient 
than the FE under homogeneity.18 In addition, as noted, the RE estimator is asymptotically 
equivalent to the FE estimator in DMP specifications if the individual effects are uncorrelated 
with the regressors, but is not consistent when this assumption is violated. In order to avoid 
making specific assumptions on the properties of the individual effects, I consider only the EF 
estimator in the rest of the paper. At the same time, the ATS estimator is unattractive even under 
slope homogeneity in VAR specifications because it does not increase the number of degrees of 
freedom available, which is often a critical issue in this context. Therefore, I shall not pursue this 

I8 The consistency of ib[G, e,,,, and their estimated varaince-covariance matrix, 

is proven by Pesaran, Smith, and Im (1996). Hisiao, Pesaran, and Tahmiscioglu (1999) 
show also that the nIC2 estimator is asymptotically normal for large N and T as long as 
&V/T -+ OasbothNandT ----f x. These results may be easily generalized to a VAR specificatiuon. The proof of the 
consistency of the MC estimator and a discussion of its asymptotic properties is available on request. 
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alternative estimation procedure further here. 

Unlike in DPM specifications, as noted implicitly by Holtz-Eakin et al. (1988) there are no 
special cases in which one can find valid instruments for consistent estimation of the parameters 
of a heterogenous PVAR. This is because both lagged xiZt and lagged ZQ depend on 7: and 
7: in a VAR specification, and hence contemporaneous and lagged xi!t are correlated with the 
composite error term w+ even if the there is only one source of slope heterogeneity (i.e., n? = 0 
for all ;).19 More generally, exogenous variables that are uncorrelated with wi,t will also be 
uncorrelated with the regressors. Furthermore, as noted before, the class of P-type estimators 
for homogeneous DPMs is wide, ranging from simple first (or quasi-first) difference estimators 
to computationally more demanding GMfW-type estimators, but there is no consensus yet in the 
literature on which is the most appropriate choice when the panel is long. Therefore, I shall not 
investigate the heterogeneity bias of IV-type estimators asymptotically and will consider only a 
simple IV estimator that has been shown to preform well when T is relatively large (by Judson 
and Owen, 1999) in the Monte Carlo experiments. 

In the next section, therefore, I study the heterogeneity bias of the FE estimator, asymptotically. 
In the following one, I compare the performance of the A4G estimator with that of the FE 
estimator and a simple IV alternative by means of Monte Carlo simulations. 

III. ASYMPTOTIC ANALYSIS 

A. Notation 

In order to derive the FE estimator and its properties we need to establish some notation. 

Let us transpose (1) and (2) and substitute the latter in the former to obtain: 

E,:t = K;t-Ai + ~i + qt, Ai = A + qi (8) 

(9) 

ix I,... N; t = 1,.*-T, 

Collect all T time observations for each individual unit i in the (TxM) vectors 

K= [ ?],G= [ :::,1>%= [ ?JG= [FJ 

I9 See Pesaran, Smith, and Im, 1996, pp. 149- 150. 
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to write (8) as: 
I( = x,elAi + (cxi 8 iT) + zi i = l;-N. (10) 

Applying the r/et operator to both sides of (10) and defining yi = vet(Y), Xi = (1~ @  Y+I), 
ai = vec(Ai), gi = vec(‘Q, for all T time observations and each individual unit i, the model can 
be represented also in SUR format as: 

yi = X&i + (ari (8 iT) +g+ ix l,...N; (11) 

where yi, (CI~ @I iT), and g.i have dimension Tllfxl, Xi has dimension TMxM”, and ai has 
dimension IM”zl. 

Similarly, stack all N time series in the (NTxM) vectors: 

with ‘iT denoting a (Txl) vector of ones, to write (9) as: 

QN _ 

Y=Y-lA+~+~ i7 = E + Y-IQ. (12) 

Applying the uec operator to both sides of (12) and defining y = vet(Y), X = (InI ~3 Y-l), 
u = uec(A), Q = vet(E), u = vec(i7), E = riec(Z), the model can be rewritten in SUR format, for 
all T time observations and N individual units, as 

y=Xa+a+u u = E + Xuec(qi); (13) 

where y, Q, V, and E have dimension NTMxl, X has dimension NTMxM2, and u and uec(qa) 
have dimension M’xl. 

Now define the following matrix operators: 

&D = INT - PO = I NT - D(D’D)-ID’ = IN @  [IT - i&i&‘&I]; 
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where D is the usual matrix of individual dummies, PO and QD are the usual (symmetric and 
idempotent) ‘between’ and ‘within’ operator, respectively (e.g., Baltagi, 1995) with IN, I,, Inr, 
1,, denoting identity matrices of conforming dimension. P and Q generalise the latter two 
operators to a system of seemingly unrelated regressions (SUR) (see Cornwell, Schmidt, and 
Wyhowski, 1992). 

Finally, define Hr = [IT - iT(i&i7’) -ii;] so that Qo = IN @  HT. Noting that i!+ = T, we 
can see by direct inspection that HT transforms any row vector of T elements in deviations from 
their average. It follows from this that the operator (lAI\d @J HT) transforms all M components (of 
dimension Tzl) of vectors like gi (of dimension TMzl) in deviations from their time averages; 
and hence (IAT @I HT) transforms the stacked vector of all T time observations on all M variable 
of system (11) in deviations from time averages, for each individual unit i. It is easily seen that 
(I111 81 HT) is also symmetric and idempotent as it has the same matrix structure as QJJ. 

B. Results 

The General Case 

Take deviations from time averages for all individual units N by applying the generalized within 
operator Q to (13) to obtain: 

F=XafC, 

where Y = Qy, X = QX, V = Qv, and Qa = 0. The FE estimate of a therefore is: 

(14) 

Proving the inconsistency of the FE estimator is a bit more tedious. In the appendix at the end of 
the chapter, I show that: 

plim (ZFE - a) = 
N--co,T--*cc 

I 

(15) 

where 
vec(Ai) = (I - Ai @  A:)-l vec(Ci) 

with A, denoting the unconditional variance-covariance matrix of the data, ~1: the jth (Mzl) 
column of 2/ec(q,) for j = 1, . . . M, and E the expectation with respect to the joint distribution of 
Ai and Ci. 

Under stationarity, the expectations in this equation are well defined and generally different 
from zero. Equation (15) therefore, shows that the heterogeneity bias of the FE estimator 
is asymptotically different from zero in general. In principle, an explicit solution for the 
heterogeneity bias of the FE estimator can be obtained computing these expectations under 
suitable distributional assumptions for Ai, and C?,. In practice, however, even the simplest, 
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heterogeneous VAR specification has no closed-form solution. 

Consider, for instance, (3) with only one source of slope heterogeneity and homoskedastic error 
terms: 

G.t = XZi,t-l + pixi,t-l + of + ‘ant, (16) 

Xi& = ^JZi,t-l + PX:iTt-l + Q!’ + “zt; 

where 

It is easily seen that 

l- X” -Xpi -wt -/If 

(I -A: 8 A;) = 1;; l-j: l-f$ 1;;; 
-y 4 -YP 1 -p2 I 

It can also be shown that the inverse of this matrix is given by 

where: 

x,0 = (1 -piy- x -p+ Xp>(l-P,y+X fpf xP)(xP-PiY - 1); 

x,1 = (XP” - PiniY - A); 

yiJ = -(XP - Pi? + 1) ; 

7-43 = (X3P- VfQY -P); 

yi;l,l = (-Xp” + p2 + p2ypi + Xp + Pi7 - l) ; 

T&2 = (-X’p” + XpiMI + p2 + X3 + iniy - 1) ; 

x:3,3 = (-x”p + A” + x”y/!$ + xp + piy - 1) . 

By direct inspection, we can also see that Ai must equal the (222) matrix, 

where 

1 , 

(17) 
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In fact, its vectorised form is given by 

vec(Ai) = (I - Ai @ A:)-l vet(G) 
1 

(Y,;l,lO” + 2q144 + %;2PY) 
1 = Ti,o (Yi:lyg2 + yi.2)2$ + yi,2PiY$ + 'i:3PiT2) 

(Yi.,JyT” + Yi.2;24 + qz,oiy+ + q3m2) * 

(Yiz2y2a2 + 2Yi,374 f yi:3:3T2) 1 

Consider now the first equation of (3) with 7:’ = [ 0 li ] denoting the first column of r$. 
Substituting for Ai in (15) we find that, even in this simple case, 

where 

‘2. = --z;5 (&T2f12+%Y$ + yi,.3,372) . 

This equation cannot be simplified further without additional assumptions because it involves 
non-linear functions of the random variable pi. In the case of a general PVAR specification, 
therefore, it is not possible to predict the sign and analyse the determinants of the heterogeneity 
bias of the FE estimator. 

An explicit solution for the heterogeneity bias of the FE estimator, however, can be obtained 
in two special cases of interest. First, a close form solution can be obtained by assuming that 
y = 0-i.e., assuming that weak exogeneity of x for the estimation of X and ,8 fails, but Granger 
non-causality of z for x continues to hold. This case allow us to study the role of 4 in (18). 
Second, an approximate solution for y f 0 can be obtained by assuming that 4 = 0 and that 
X = p = 0-i.e., assuming that weak exogeneity of x for the estimation of X and ,O holds, but 
Granger non-causality of x for II: fails. This second case allows us to examine the role y in (18). 
The next two subsections look at each of these two special cases in turn. A third special case, in 
which both (b and y are different from zero but X = p = 0 and y = 1-i.e., a case in which both 
distinguishing features of a PVAR specification are present-is analyzed by means of Monte 
Carlo simulation in the final section of the chapter. 
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A First Special Case: Weak Exogenity Fails 

Let’s assume that 4 # 0 but y = 0, then (16) becomes: 

%,l = x2+1 + p$+, + Qf + gt , 

xi.t = p&-1 + a’ + &?t. 

In the appendix at the end of the chapter I show that, in this case, 

(19) 

(20) 

where: 

co’1 = (cT2/T2) (1 - p”) (1 - Xp)” + (1 - x”p2) w + (1 - p’) p2; 

Q’2 = -(qb2/7”) (1 - p’) (1 - x”) - 2($/T) (1 - p’) (1 - A) p; 

Q’3 = ((b/T) (1 - p’) (1 - x2) pw. 

In this case, the size of the asymptotic bias of the FE estimator depends not only upon the mean 
coefficients (A, ,C?, p), the variance of pi (w), and the ratio (g2/r2) as in the standard DPM case 
analysed by Pesaran and Smith (1995) but also on the sign and the magnitude of 4.” Moreover, 
in the appendix, I show that in this case both pFs and x,, may over- or underestimate the true 
values of /3’ and X depending on the sign of p and C$ and the magnitude of the absolute value 
of 4 relative to the absolute value of (2/%-/( 1 + A)). If 4 # 0, therefore, it is possible that the 
heterogeneity bias compounds instead of offsetting the small 7’ bias of the FE estimator, thereby 
yielding estimation results potentially more distorted than in standard DPM specifications. 
Nonetheless, the bias disappears if p = 0 or w = 0, or if X approaches one from below when p # 0 
and w # 0, as in the case analysed by Pesaran and Smith. The result that 

plim(XFg) = 1 plim(pF,) = 0 
P--*1 PiI 

irrespective of the true values of X and cp also continues to hold, as \-I2 and Q3 tend to zero as p 
approaches unity. 

In summary, the main difference compared to the result of Pesaran and Smith is that, when (b # 0; 
it becomes more difficult to predict the sign of the heterogeneity bias of the FE. In particular, it 
is possible that the heterogeneity bias of both x FE and p,., compounds instead of offsetting the 
small T bias if the correlation between the error terms is sufficiently enough. 

” Indeed, it is easy to see that, further assuming that 4 = 0 in (19), we obtain Pesaran 
and Smith’s result previously reported in (7). 
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A Second (Very) Special Case: Granger Non-Causality Fails 

Suppose y # 0 but X = p = 0, then the model becomes: 

%,t = j?iXi,,-1 + af + E$ ) (21) 
Xi& = q/x+1 + a; + &$ 

Assume also, without loss of generality, that g2 = r2 = 1. Substituting these hypotheses in 
equation (18) and simplifying the resulting expression, it is easily seen that: 

where 

A’ = E 

(22) 

If we now assume C$ = 0 in (22), we can see that the heterogeneity bias of x’,E vanishes, while 
that Ofi?,, iS given by: 

(23) 

By taking a second-order Taylor expansion around the cross-sectional mean of & (which is zero) 
of the two non-linear functions of & inside the brackets of the numerator and the denominator 
of this expression and calculating the expectations with respect to the distribution of &, the 
asymptotic bias of pFE can be approximated as follows: 
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= 

(1 - y20”) (4y”p) w 

(1 - y2j?2)2 + (63’“/?’ + 27”) w’ 

According to this approximation, pF,, always underestimates p. This bias vanishes only if 
w = 0, or if either y or ,0 are equal 0, or if jr,!?1 approaches one from below when w, y, and /? 
are different from 0. For a given value of y its size depends on the average value of the roots of 
the system (equal to &(r/?) 1/z in this case) and the variance of pi (w). Moreover, it is possible 
to show that, for given values of y and /3, the bias is always increasing in w; by noting the first 
derivative of the expression approximating the asymptotic bias of pFE with respect to w is positive 
if (1 - (1 - f/3’)‘) > 0, which is always satisfied under stationarity. The relation between 
average persistence (measured by the average absolute value of the roots of the system) and the 
size of the bias for given variance of pi, instead, does not seem to be monotonic. 

This last point may be seen clearly in a very special case (a case analysed also by means of Monte 
Carlo simulations in the next section) assuming that y = 1. If X = p = 0, stationarity requires that 
Ii(~p)~” 1 < 1 and constrains the range of variation of pi for given y, and vice-versa. If y = 1; 
then stationarity requires l,Oil < 1 for all i and average persistence increases one-to-one with /3. 
Further, assume that Ei is uniformly distributed over the interval [kw(l - p)] with 0 5 w 5 1 
(where w now denotes a scale parameter that controls the dispersion of & arrund a given p), and 
0 < /3 < 1 for simplicity.21 In this very special case, the asymptotic bias of ,6,, is given by 

Figures 1 and 2 plot this expression (for 0 < w 5 1 and 0 < ,L? < 1) in absolute value and in 
percent of the true value of ,I!?, respectively. As we can see from these plots, the absolute value 
of the bias increases with ,0 initially, peacks around /3 = 03, and then decreases toward zero as 
,/? approaches one. In percent of the true value of ,L?, instead, the bias is monotonically decreasing 
in ,/3 for any given value of w. The intuition is simple: slope heterogeneity induces correlations 
between the error term and the regressors, and autocorrelation in the error term to the extent to 

‘I If ci is distributed uniformly over the interval [k0(1 - ,/?)I, then Bi is also uniformly distributed 
d2(1-s3)2 with mean ,8 and variance 12. Increasing J for given ,/3 therefore implies increasing the variance of 9,. 
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which the regressors are autocorrelated. Higher persistence, induces stronger autocorrelation in 
the error term, and hence a larger bias. However, since we have assumed that all VAR systems are 
stationary, above a certain level of persistence, the scope for heterogeneity decreases. In the limit, 
when average persistence in the system is maximal, all individual units must have very similar 
parameter values, and hence the heterogeneity bias disappears. 

In summary, the main difference compared to the result of Pesaran and Smith for standard DPA4s 
is that, in the presence of a feedback from z+ to Q (i.e., when y # 0), the bias of pFE does not 
vanish even if the process for xiZt is serially uncorrelated. This confirms what previously noted 
discussing the IV-type estimators, and thus that in VAR specifications there are fewer special 
cases in which the heterogeneity bias of pooled estimators disappears. The magnitude of this 
bias, however, could be small in percent of the true value of the parameters of interest if average 
persistence in the system is sufficiently high. This further suggests that slope heterogeneity should 
be a more serious source of concern for VARs estimated in first differences rather than levels of 
the variables of interest. 

The study of this second special case concludes the analysis of the large sample properties of the 
FE estimator. In the next section, I shall study the performance of the FE, the MG and an IV 
alternative in a model in which both distinguishing features of a VAR specification are present. 
However, before proceeding, it is opportune to summarize the conclusions of the asymptotic 
analysis. 

When X = p = 0, the heterogeneity bias of the FE estimator disappears in a standard DPA4 
specification. In a VAR specification, instead, it does not. Under stationarity, the expectations in 
equation (22) are we11 defined and generally different from zero, and the bias depends on both ,/Jiy 
and 4, unless & = 0 for all i. Thus, predicting the magnitude and the sign of this bias theoretically 
is difficult in a reasonably general case. However, we have shown that, first, the heterogeneity bias 
of the FE estimator could change sign for a given average value of the parameters of interest if 
the correlation between the error terms is sufficiently strong, possibly compounding rather than 
offsetting its small T bias. Second, the magnitude of heterogeneity bias of the FE estimator 
may be small relative to the true value of the parameters of interest if persistence in the system 
is relatively high. In a VAR specification, therefore, the heterogeneity bias of pooled estimators 
could be more or less severe than in standard DPM specifications. 

IV. MONTECARLOANALYSIS 

This section looks at Monte Carlo simulation evidence in a specification in which both weak 
exogeneity and Granger non-causality fail (i.e., both 4 and y are different from zero) while 
X = p = 0. The model studied is (21) and the implicit form of the heterogeneity bias of the 
FE estimator is given by (22). This simple case is interesting because it helps us analyse 
the interaction of the two distinguishing features of a VAR specification discussed above, the 
contemporaneous correlation between the variables of interest and their lagged interdependence, 
while maintaining full control over the Monte Carlo experiment. Richer VAR specifications (e.g., 
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with X # 0 and/or p f O! or with multiple sources of heterogeneity) would be more realistic, but 
the generalizability of the Monte Carlo results (in the sense of Hendry, 1984) would diminish 
because it would be practically unworkable to control for all the features of the model potentially 
affecting the outcomes of the experiment. The model is also interesting to analyse because the 
short run effects of Q on z~,~ and Xitt on %i:t coincide with their long run effects under the 
assumptions made. 

In the rest of this section, I will compare the performance of alternative estimators under different 
assumptions on the size of the panel, and degree of heterogeneity and average persistence across 
section. The next subsection describes the set up of the experiment. The following one reports 
and discusses the simulation results. 

A. Experiment Design 

Following Pesaran, Smith, and Im (1996), and consistently with the analysis in the previous 
section, I consider only one source of slope heterogeneity (i.e., pi = /? + ci with ti uniformly 
distributed over the interval [iw(l - /?)I with 0 2 w 5 1 and 0 < /J < 1). Unlike Persaran et a. 
(1996), I use the uniform rather then the normal distribution to characterise the cross-sectional 
distribution of & because this allows me to control for the degree of slope heterogeneity introduced 
in the model through a single scale parameter (w), while guaranteeing that no individual unit 
violates the stationarity assumption as long as ]y,fll < 1.22 

Somewhat arbitrarily, I maintain y = 1 throughout the experiment and let Bi vary in the open 
interval (il). If y = 1, the absolute value of the true cross-sectional mean of pi (]p]) controls 
the average degree of persistence in the model. This is minimal for I/3] = 0 and maximal as ]/3 
approaches one. As the variance of /?i is w2(1-8)2 for given persistence, w controls the dispersion 
of the cross-sectional distribution of pi around /3 [i.e., the degree of slope heterogeneity introduced 
in the model), which is minimal for w = 0 and maximal for w = 1, always ensuring that both 
individual eigenvalues are less than one in absolute value.23 

I consider the specific values ,!3 = (0.2; 0.8) and w = (0; 0.2; 0.8}, which represent six points 
in the parameter space plotted in Figures 1 and 2 and characterised in the table below for 
w f 0. Choosing ,B = (0.2; 0.8) implies average characteristic roots equal to *0.45 and 
f0.89 respectively: a relatively low and relatively high degree of average persistence. Choosing 

” Hsiao, Pesaran, and Tahmiscioglu (1997) use the truncated normal distribution rather 
than the uniform in their Monte Carlo experiment to avoid explosive (or unstable) simulated 
series. There are two reasons why I prefer to use the uniform distribution. First, under 
this assumption, I can derive the exact asymptotic value of the heterogeneity bias of the FE estimator in the special 
case section in which 4 = X = p = 0 and nf = 1 by integrating analytically the numerator and the denominator of (23). 
Second, assuming that slope heterogeneity is uniformly distributed within some theoretically 
determined bounds does not seem a bad assumption in practice: it is not immediately evident that one could have strong 
a-priori reasons to assume a hump-shaped distribution across sections for the short run parameters of interest. 

‘s As already noted, if X = p = 0, the eigenvalues of individual VAR systems are given 
by &m, Stationarity requires that I+fll < 1 and constrains the range of variation of pi for given ^I, and vice- 
versa. Therefore, if Ei is distributed uniformly over the interval [*u( 1 - /?)I, stationarity is assured for all i for given ,$. 
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w = (0; 0.2; 0.8}, means considering the homogeneity case, a case of low heterogeneity, and a 
case of high heterogeneity, relatively to a given level of average persistence. In fact, we can see 
from the table below that, under the assumption made, the range of pi and & and the variance of 
pi, for given absolute of the average roots in the system, increases monotonically. 

Characterising four points of the parameter space 
/!?' = w = 0.2 /I3 = 0.8~ = 0.2 /9 = 0.2 w = 0.8 /3 = w = 0.8 

Average roots zto.4 f0.9 AO.4 *0.9 
Range of pi [*0.36] [f0.84] [h-0.84] [&to.961 
Range of & [+0.16] po.041 [&0.64] [*0.16] 
Variance of 4, 2.1 x 1o-3 1.3 x 1o-4 3.4 x low2 2.1 x 1o-3 

I assume an homogeneous variance-covariance matrix of the error terms and set CT’) = T’ = 1. 
The choice of a homoskedastic specification is dictated by the desire to assess the influence of 4 
on the finite sample properties of the estimators considered in insulation from the possible role 
of its heteroskedasticity. By setting $ = r2 = 1, $ does not only determine the covariance 
between x and Z, but also their correlation which is bounded to lie between -1 and 1. I consider 
4 = (0; *0.9}, the case of uncorrelated error terms and the cases of, either positively or 
negatively, highly correlated error terms to highlight the potential effects of this feature of the 
model on the finite sample properties of the estimators. 

I examine typical dimensions of a macro panel dataset and, in addition, one case to control for 
situations in which there are very few individual units, likely to arise in working with subgroups 
of individuals, as for instance in the next chapter of the thesis: 

(N,T) = {(50,50);(20,50);(50,20);(20;20); (10,50)}. 

Finally, the vector of error terms is generated from a bivariate normal distribution with variance- 
covariance matrix C and the initial conditions equal zero, while a standard assumption is made to 
generate the individual effects C$ and Q. Thus: 

G 
[ >I uit - NIID(0, C); c= 1 4 

[ I $1 j $5 = (0; &0.9} ; 

Each experimental run is based on 1000 replications and different runs start from the same seed so 
that the results can be easily replicated, and different experimental runs are based on the same set 
of randomly generated numbers. For each replication, 30 + T observations are generated with the 
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final T observations used to compute the estimatesz4 

B. Results 

Tables 1 through 5 report the results of the Monte Carlo experiment. The experiment consists of 
90 runs or different cases (5 panel dimensions, times 2 degrees of persistence, times 3 degrees of 
heterogeneity, times 3 values of 4). 

Each table reports the results for a different panel dimension: Table 1, (N, T) = (50,130); 
Table 2, (N,T) = (20,ZO); Table 3, (N,T) = (lOTSO); Table 4, (N,T) = (50,20); Table 5, 
(N; T) = (20,20)). 

In these tables, heterogeneity increases from left to right (w = 0,0.2,0.8), and the 
contemporaneous correlation of the error terms varies from top to botton (4 = 0,0.9, -0.9). 
Persistence is relatively low (la = 0.2) in the upper part of the tables and is relatively high in the 
lower part (j? = 0.8). In all runs, X = p = 0 and y = 1. 

For each run of the experiment, the tables report the estimated parameters (X and /?, denoted 
‘Lambda’ and ‘Beta’ respectively in the tables), their estimated standard errors (denoted ‘S.e.‘), 
the absolute value of the finite sample bias (denoted ‘Bias’), which equals the estimated parameter 
value in the case of X, their experimental standard deviations (denoted ‘S.d.‘), and, for ,b only, the 
finite sample bias as a percentage of the true value of p (denoted as ‘Fbias as % of true value’). 

If applicable, the exact asymptotic bias of )fi as a percentage of its true value is also reported 
(denoted as “Abias as % of true value”), where the latter is computed by integrating analytically 
the two expectations in (23) with respect to the distribution of li under the assumptions made in 
the experiment and described in the previous subsection. 

Homogeneous Panels 

In the benchmark case of a homogeneous, large and long panel dataset with relatively low 
persistence and no correlation between the error terms (see upper left corner of Table l), the IV 
estimator does quite well with very small finite sample bias and standard errors, which, although 
considerably higher, are of the same order of magnitude than those of the FE and the iVlG 
estimators. The FE estimator performs well too in this benchmark case, even though, as expected, 
the finite sample biases of p and X are of one and two orders of magnitude larger than those of the 
IV estimator, respectively. The MG estimator, in this case, scores as well as the FE estimator in 
terms of efficiency and finite sample bias of the estimate of X. However, it clearly underperforms 
the FE estimator in terms of bias, underestimating the true value of ,/? by more than 14 percent 
even when T = 50. The downward bias of the FE, instead, is only about 7 percent in this case. 

Decreasing N to 20 for fixed T = 50 does not affect these results (see Tables 2 and 3) while 
decreasing T to 20 for fixed N = 50 has strong impact (see Table 4): in this case, the bias of the 

24 The Monte Carlo experiment is programmed in Gauss and the code is available on request. 
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F./Z estimator of ,B increases to more than 15 percent of the true value and that of X moves from 
-0.02 to -0.06 in absolute value; the iU!G’s bias of /? shoots up to more than 30 percent of the true 
value and that of X rises from -0.03 to -0.06 in absolute value. 

Interestingly, the introduction of a correlation between the error terms in the benchmark, 
homogeneous case above (i.e., N, T = 50,50 and 4 # 0) affects considerably the iWG and the 
FE estimates of both X and ,0, albeit in a different way: the bias of X is smaller (larger) in absolute 
value than the case in which $ = 0 if 4 > 0 (4 < 0); the bias of /?’ is always larger and even more 
so when 4 < 0. The IV estimates of X and ,!? are also affected by 4 # 0 in a similar way, but the 
magnitude of this effect is practically insignificant2j 

Experimenting with larger time dimensions, everything else equal, i.e., T = 100 and T = 200, it 
was possible to establish that we would need at least 70-75 time observations to bring the &!G 
bias down to below 10 percent of the true value of p with 4 = 0; and more than 100 observations 
to bring it below 10 percent with 4 = -0.9. Instead, only 60-70 time observations would be 
needed, instead, to get the bias of the FE estimator of ,B down to below 10 percent of the true 
value even with 4 = -0.9 (Results not reported). 

Increasing persistence by rising ,L? from 0.2 to 0.8 (see lower part of Table 1) reduces the bias 
of the FE and the iWG estimators considerably without affecting their efficiency. The standard 
errors of the IV estimates, instead, increase dramatically with persistence. Decreasing N to 20 
for fixed T = SO, with relatively high persistence (see lower part of Table 2) does not affect 
the results for FE and the A1G estimators, but exacerbates the inefficiency of the IV estimator, 
which yield a standard error of the estimate larger than the estimate itself in this case, and hence 
render this estimate of ,0 insignificant. Instead, reducing T to 20 for fixed N = 50 (see lower part 
of Table 4) pushes the biases of the FE and MG estimators back to their benchmark values under 
low persistence and renders the IV estimator not only inefficient but also as biased as much as the 
MG. 

In summary, this first set of Monte Carlo results in the absence of slope heterogeneity bears out 
a well known conclusion in the dynamic panel data literature and help to qualify it in the case 
of a VAR specification: there is a trade-off between consistency and efficiency in estimating 
homogeneous models suggesting to use IV-type estimators when the panel is relatively short and 
FE or R&type estimators when the panel is relatively long-say T > 20 - 30, as recommended 
by Judson and Owen (1999). However, one should not disregard the small sample bias on 
coefficients other than that on the lagged dependent variable as negligible when working with a 
VAR specification because, as we saw, their small T bias may be substantial. In addition, and 
more importantly, in a VAR specification, the number of time observations needed to reduce 
the small T bias of FE and KY-type estimators is probably larger than 20-30 as generally 
recommended for standard DPMs because the variance-covariance matrix of the error terms is 
unlikely to be diagonal in practice. In a VAR specification, the time dimension needed to neglect 
the small T bias of these estimators appears to depend upon the degree of persistence at system 

Note that these results are fairly robust to increased persistence and/or changed panel dimensions (see below). 
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level rather than only upon the average value of the coefficient of the lagged dependent variable 
as in a standard DPM. By pushing up the estimated standard errors of IV-type estimators and 
pushing down the bias of FE and R&type estimators, for a given T, higher persistence may 
actually tilt the balance in favor of the latter. 

Heterogeneous Panels 

Under relatively low heterogeneity, the results are generally very close to those under homogeneity 
(see the second three columns of each table). I deduct from this that heterogeneity must be 
relatively high to be a serious source of concern in finite samples for pooled estimators. Instead, 
as expected, the bias of pooled estimators of both X and j? may sizable under relatively high 
heterogeneity (see the last three columns of each table). 

In the benchmark case of a large and long panel dataset with relatively low persistence and 
uncorrelated error terms (see upper right part of Table l), the IV estimator does particularly badly. 
Its biases and standard errors are larger than those of the FE estimator and the MG estimator, 
respectively. Instead, the MG estimator does quite well in this case, with biases less than half 
those of the FE estimator in absolute value and standard errors considerably higher than those 
of the FE estimator only for /?. 26 The FE estimator lies between the MG and the IV estimator, 
with a bias (of approximately 30 percent of the true value for ,0) comparable to that of the IV 
estimator and the lowest standard errors. 

Two more facts are worth noting from the results in this benchmark, high heterogeneity case. 
First, the presence of slope heterogeneity appears to exacerbate the (negative) small T bias of 
pooled estimates of X: the FE and IV estimates of X equal -0.05 and -0.08, respectively, 
compared to a true values of zero and estimates under homogeneity equal to -0.025 and 0.0001, 
respectively (see upper left part of Table 1). Second, the heterogeneity bias of the FE estimator 
of ,0 appears to approach its asymptotic value rather quickly. The overall finite sample bias of 
the FE estimator of p, in fact, turn out about 60 percent of that predicted by asymptotic theory 
(i.e., 48 percent of the true ,0 in this case-see “Abias as % of true value” in the upper right part 
of Table 1). This despite a small T bias of opposite sign partially ofletting it. At the same time, 
decreasing T for fixed N, the heterogeneity bias of the FE estimator of p drops to less than 20 
percent of its theoretical value (see upper right part of Table 4), while decreasing N for fixed T 
(see upper right part of Table 2 and 3) leaves it above 50 percent of its asymptotic value. 

The results found by introducing correlation between the error terms are similar (see middle right 
part of Table 1). In this case too, the MG estimator performs better than the FE estimator, which 
in turn improves upon the IV estimator. We have no theoretical benchmark for the asymptotic 
value of the heterogeneity bias of the FE estimator when both 4 # 0 and y # 0. Nonetheless, 
it appears that introducing correlation between the error terms compounds rather then offsetting 
the small 7’ bias of both X and ,C?, when this correlation is large. This result suggests that the 

26 Note however that, even if the number of individual units is relatively small (N = 20 for T = SO), the MC’ 
estimates are still precise enough to distinguish between the significance of ,9 and the insignificance of 
X (see upper right part of Table 2). This ceases to hold for a very small M, sayiV = 10 (see Table 3 and the text below). 
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heterogeneity bias of the FE estimator of p has the same (negative) sign as the small 2’ bias when 
the error terms are strongly correlated, regardless of the sign of this correlation, thereby giving 
rise to potentially more distorted estimates that in a standard DPbf. 

A smaller N = 20 for fixed 2’ = 50 does little difference to the performance of the &LG estimator. 
But a very small N (say equal 10) does affect the efficiency of the estimates obtained considerably 
(cfr. Table 2 and 3). 

None of the estimators considered give satisfactory results if the panel is heterogeneous and 
relatively short. A shor T = 20 for fixed N = 50 causes much more serious problems, especially 
for the estimation of /? (see Table 4). The small T bias of the IVG estimator increases sharply to 
about 30 percent of the true value of /3 when $ = 0, and exceeds 60 percent when 4 = -0.90. On 
the other hand, the small T bias of the FE estimator is large enough to offset the heterogeneity 
bias almost completely when 4 = 0, yielding an overall finite sample bias that is less than 10 
percent of the true /3 in this case. But, as already noted, its performance deteriorates sharply once 
correlation between the error terms is introduced (with a bias equal to almost 70 percent of the true 
value of /? if 4 = -0.9). This is because of the strong compounding effect of the heterogeneity 
bias of p. If the time dimension of the panels is reduced from T = 50 to T = 20 for fixed N = 50, 
with or without correlated error terms, the performance of the IV estimator does not deteriorate 
further (as compared to the benchmark heterogenous case in which T = 50 and N = 50), but it 
does not improve either; the IV estimator is still of no help in this case. 

All three estimation procedures show lower finite sample biases when persistence is higher (see 
bottom right part of Table l), and hence better performance. The FE and the AJG estimators 
also have somewhat lower standard errors in this case, while the efficiency of the IV estimator 
deteriorates further, compared to the case in which persistence is low; thus, yielding a misleading 
estimate of ,0. Interestingly, in this case, the FE estimator behaves better than the MG estimator 
even in terms of bias: the bias of the FE estimator in percent of the true value of /3 is about 
4 percent when $ = 0 (compared to a theoretical value of 6.2 percent), about 2 percent when 
4 = f0.9, and about 7 percent when $ = -0.9, while the biases of the MG estimator are -6.2, 
-8.0, and -9.5 percent, respectively. 

The asymptotic analysis in the previous section suggests two reasons for this result. First, as 
shown by Figures 1 and 2, higher persistence reduces the scope for heterogeneity under the 
(“homogeneity”) assumptions that all individual VAR systems are stationary; the asymptotic 
value of the heterogeneity bias of pooled estimators should be relatively smaller in these cases. 
For instance, when 43 = 0 and y = 1 and ,/3 = w = 0.8, the variance of ,L?i is one order of 
magnitude smaller than that implied by 4 = 0 and y = 1 and /? = 0.2 and w = 0.8 (see summary 
table in the text above), and the asymptotic bias of the FE estimator decreases from 48 percent to 
just over 6 percent of the true value of @  in this case (compare “Abias as % of true value” in the 
upper and lower right part of every table). Second, the heterogeneity bias of the FE estimator 
seems to be become positive when ,D increases from 0.2 to 0.8, and hence offsets rather than 
compounds the effect of the FE’s small T bias; a possibility which we had identified clearly in 
the case (not considered in the Monte Carlo experiments) in which 4 # 0: but y = 0. 
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With relatively high persistence, as in the case of low persistence, a smaller N = 20 for fixed 
T = SO affects negatively the efficiency of the FE and the AJG estimates, but leaves their biases 
almost unchanged (see bottom right of Table 2). Instead, decreasing T to 20 for fixed N = 50, 
increases their small 7’ biases enough to offset completely the heterogeneity bias of the FE 
estimator and to push the bias of the MG estimator well above 10 percent of true value of p, 
regardless of the value of 4 (see bottom right part of Table 4). As a result, in this case, the FE 
estimator does remarkably better than the MG notwithstanding a relatively high degree of slope 
heterogeneity. If either of the two panel dimensions is decreased, with high persistence, the IV 
estimates of both X and /3 become misleading (see bottom part of Table 2 and 4), and break down 
completely when both panel dimensions are relatively small (see Table 5). 

In summary, in a model in which both distinguishing features of a VAR specifications are 
present, IV-type estimators can yield very misleading results if the panel is heterogeneous: they 
are not only inefficient, but also badly biased. The performance of FE and R&type estimators 
depends on the time dimension of the panel, the degree of average persistence, the degree of slope 
heterogeneity, and also the strength of the correlation of the error terms in a VAR specification. 
The presence of strongly correlated error terms, in particular, may induce shifts in the sign of the 
heterogeneity bias of these estimators regardless of the degree of persistence. It is thus difficult to 
formulate recommendations that have general validity. 

Nonetheless, we learned that FE and R&type estimators may produce better estimates than 
the MG in some points of the parameter space, even under relatively high heterogeneity, and 
particularly so in the presence of high persistence and contemporaneous correlation among the 
error termsz7 This is because the small T bias and the heterogeneity bias of these estimators have 
opposite sign in some points of the parameter space. By the same token, in those points of the 
parameter space in which the heterogeneity bias has the same sign as the small T bias, the FE 
estimator may perform particularly badly. The MG turns out a safe bet when heterogeneity is 
high and T is very large. However, if T is not long enough, the MG risks solving one problem by 
creating another one of equal magnitude and opposite sign. When the panel is heterogeneous and 
relatively short-say as short as T = 20, which would be regarded rather long in the traditional 
literature on DPMs-there is no obvious solution to the problem posed by slope heterogeneity. 

In this latter case, a Bayesian estimation approach, as pursued by Hsiao, Pesaran, and 
Tahmiscioglu (1997) for DPMs and Canova and Ciccarelli (2000) for PVARs, seems a viable 
solution, as long as the cross-sectional dimension of the panel is moderate. In fact, computational 
costs are likely to limit the applicability of the estimation procedure proposed by Canova and 
Ciccarelli (2000) to very large cross sections of multivariate time series.28 Alternatively, one could 

27 Persistance and contemporaneous correlation might explain why Attanasio et. al (1999) 
do not encounter significant differences between FE and MG estimates when applied to 
a VAR for saving, investment, and growth in a large sample of industrial and developing countries despite 
the evidence of relatively high heterogeneity, at least among developing countries, provided by Boyd and Smith (2000). 

‘a One additional advantage of a Bayesian estimation approach to panel VARs is that the problem posed by non- 
stationarity can be solved in much more simple and direct way in this framework by designing appropriate priors. (See 
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try to correct the MG estimator for its small T bias by using expansions similar to those derived 
by Pesaran and Zhao (1997) for standard DPMs, or to develop a correction for the FE estimator 
based on approximations of its heterogeneity bias similar to one developed in the previous section 
of this paper in the special case in which y # 1 but $ = 0 and advocated by Judson and Owen 
(1999) for standard DPMs. 

V. CONCLUSIONS 

Applied researchers sometimes estimate VARs with panel data relying on known asymptotic and 
finite sample results for DPMs. In this paper, I have shown that estimating a VAR with a macro 
panel dataset may be more complicated than that: the choice of the right technique depends on 
the time dimension of the dataset, the dispersion of the cross-sectional distribution of the slope 
parameters, the average degree of persistence in the system, and the variance-covariance matrix 
of the error terms, including particularly the strength of the contemporaneous correlations that are 
usually different from zero in most applications. 

The asymptotic analysis suggests that (i), in a model in which strong exogeneity fails because of 
contemporaneous correlation between the error terms, the covariance term may add or subtract 
to the magnitude of the heterogeneity bias of pooled estimators, depending on its own sign and 
magnitude, and may induce changes of sign in the bias as compared with the case in which the 
error terms are uncorrelated; (ii) in a model in which strong exogeneity fails because of a lagged 
feedback from the endogenous variable to the weakly exogenous variable, the heterogeneity bias 
in relation to the true value of the parameters of interest is always positive, increasing in the 
degree of heterogeneity for given persistence, and decreasing in the level of persistence for given 
heterogeneity in the system. 

These results suggest that it is more difficult to predict the sign and the order of magnitude of the 
heterogeneity bias of pooled estimators in a general VAR specification than in a standard DPM, 
and warrant particular caution when the VAR is estimated in first differences (and persistence 
is usually lower), or when the estimated elements of the correlation matrix of the reduced-form 
residuals are relatively large (as often happens when estimating VAR in levels). 

The Monte Carlo experiment indicates that (i) the finite sample value of the heterogeneity bias 
of pooled estimators converges rather quickly to its asymptotic value, at least in the very special 
case for which we have both asymptotic and small sample results; (ii) the dispersion of the slope 
parameters around their mean must be high in absolute terms for the heterogeneity bias of pooled 
estimators to be substantial; (iii) the FE estimator may perform worse than in standard DPAd 
specifications in those points of the parameter space in which the heterogeneity bias has the 
same sing as the small T bias, but could perform better than the MG estimator in others, and 
particularly so when persistence is relatively higher; (iv) on the other hand, the time dimension 
of the panel must be longer than generally thought for the small T bias of the MG estimator to 
be negligible when the covariance of the error terms is different from zero. The Monte Carlo 

a special issue ofthe Journal of Applied Econometrics (1991, Vol. 6.) for more details on this issue. 
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experiment has shown also that (v) a few individual units are sufficient to obtain relatively efficient 
iWG estimates, and (vi) IV-type estimators are particularly vulnerable to slope heterogeneity 
and/or high persistence, but they perform very well if the panel is relatively homogeneous and 
persistence is low. 

These results suggest using the AJG estimator only when slope heterogeneity is relatively high 
and the time dimension of the panel is very long. However, how heterogeneous a panel dataset 
must be to become a source of concern, and how long the panel must be for the mean group 
estimator to represent a valid solution, remains an empirical question given that the actual size of 
the overall biases will depend on the nonlinear interaction of a large number of parameters. More 
generally, these difficulties suggest that other approaches, such as those proposed by Pesaran et al. 
(1997) and Canova and Ciccarelli (2001), could be more successfully applied to the estimation of 
VARs with heterogeneous macro panel data. 
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I. THE HETEROGENEITY BIAS OF THE FIXED EFFECTS ESTIMATOR 

A. The General Case 

From (14) and ( 13) in the text, we know that 

2iFE = (i?z)-1 (3&j) 

as F = ~CL + Y. Hence, as Q is symmetric and idempotent, 

(z&E -a) = (2x) -I (2”) 

(X’QX)-’ (X’Qv). 

In order to derive plimNAco,T+cx, (CF, - a) we need to take a few intermediate steps. 

First, note that 

In fact, suppose N = 2, 

r, (IN @ HT) yl = [ K,-I %,-I 
HT 0 
o ~~ I[ Yl-1 

yz,-1 

= Y:,-~HTK,-I + u,',-,ff~Yi,-~ 

Then, because of the definition of X, Q, and Y, and the properties of the Kronecker product, we 
have 

X’QX = (r, @ y’l) (IM 8 &II) (1;M 8 y-1) 
= (IM @ Y.,QDY-1) 
= (IM @ JCL1 (IN 8 HT) Y-1) 
= IM @ ~y:-$~x,-~, 

i=l 

C,"=~~/;~-~HTK,--I 0 0 

IX 0 *. 0 0 0 CLY~~-~HTK,--I 1 
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and 

Y’,&L,u~ 

Y),QuuM I 
Y!l (IN @ HT) U’ 

y’, (IN 8 HT) uM I 

where xlmlis the ith(TzM) element of Y-r, uj = [ u{,, . . B u:,~ . . . y!h,T 1’ is the 
jth (NTzl) element of u, and uj = [ vi,1 . . . GT ] ’ is the ith (Txl) element of uj for 
j = I,... M. Note also that ti = 4 + x,-rni, ihere ~1 is the jth (Mrcl) element of 
uec(ni), with&j = [ &j,, ..a ~31~ ... E$~ 1’ being the jth (NTrcl) element of E and 
&[gl *-* gT]’ being the itlL (Tzl) element of @  for j = 1, . . . M. Therefore, 

! 
( ~~~~:-~HTE,-I)-~ (C&~;:-~HTU~) 

(&E-a) = i (25) 

(C,"=,Y,:_,HT~,-,)-~(C~~~~-~HTVM) 

Second, since (8) is covariance-stationary, assuming further that the process started a long time 
ago (i.e., lim,,, l$,-,Ai = 0), we have: 

x = (ai @  iT) (I - Ai)-’ + gBi,-,A:, (26) 
s=o 

and thus co 
X,--I = (QG @  iT) (I - Ai)-’ + CTi,-,-lAq, (27) 

s=o 

XI-1 = (I - A;)+ (ai @ iT)’ + 2 ALE&, (28) 
s=o 
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where zi,+ (z:,-,) are the (TzM) martices of observations on the sth-order lags of Zi. In fact, 

I( = I$,-lAi$ai@iT+Zi 
= (x,-zAi -I- Qi 8 iT + &i-l) Ai -I- Qi 8 iT $ Ei 
= x,-zAf + (CXi @  iT) + (CQ @  iT) Ai + Zi + Ei-1Ai 
= l$,-sAQ + (CZ~ 8 iT) + (ai @  iT) Ai + (ai 64 iT) AZ + ‘Zi + Ei-1Ai + Ei-zA? 

= : 

Third, following Appendix C of Pesaran and Smith (1995), it is possible to show that: 

(29) 

Finally, note that 

N-ico,T-m NT 

plim 
CfL, ~L~HTu? 

N--m,Tcc NT > 

forj = l,..eM. 

~~:-~HTK,-I 
ZX 

T (30) 

Consider first plim,,, (x:-lH~K,-l/T) in (30). Substituting (27) and (28) for K,,-1 and Y& 
we have: 

plim 
yil-lH~yi,--~ 

T (32) 
T-WC 

= plim (I - Ai)-” (ai 8 iT)’ HT (ai @  iT) (I - Ai)-’ 
T4CC T 

+ plim E zo A$~,-,-,) HT(~~~~E~,-~--~A~) 

T4CC T 

= c A$CiAz = Ri = E(~~-l~,-l) 
s=o 

where 
wec(&) = (I - Ai @I A:)-’ vec(Ci), 

with E denoting the unconditional expectation with respect to the distribution of &. In fact, 
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(ai @  iT)’ HT = 0, plim,,, E’7-S~EI’--7) = 0 for s # T because of (29), and 

uec = 2 wet (Af’C,A,“) 
s=o 

= C( AZ’ @  AZ) wet (Xi) 
s=o 

00 = C( Ai @  Ai)” zIec (Xi) 
s=o 

= (I - Ai @I A:)-l zlec (Xi) , 

where vec(A+B) = vet(A) +vec(B), zlec (ACB) = (A @  B) we&, and (A” @  B”) = (A @  B)” 
for any suitable matrix A and B, because of the properties of the zIec operator and the 
Kronecker product, with the last equality of this expression deriving from a standard multivariate 
generalisation of the convergence of an infinite geometric series with argument less than one in 
absolute value, under stationarity.28 

Consider then plimT,, (~:-~HTG/T) in(31) forj = 1,. . . M. Recalling that vi = E: + Y&q!, 
where 7: and 4 were defined above and substituting this in (plimT,,(YiI_,HTU~/T)), for 
j II I,... M, we obtain: 

(33) 

where vec(&) was defined above. In fact, for each j = 1, . . . M, we have: 

28 See Hendry (1995, page. 112) and Hemilton (1994, page 264-266 and page 298-300) 
and their mathematical appendices for more details. 



- 32 - APPENDIX I 

= plim [(I - Ail-l' (% @ iT)' + Czo A~F:,-,-,] HT&i,j 
T+CC T > 

= plim (I - Ai)-” (ai 8 iT)’ HT&i,j 

> 

+ ~ A,s’ plirn HTEi,j 

T+oO T s=o T+W 

~‘,-“-~ 

= 0 
-, 

as (ai @I in)’ HT = 0 and plim,,, Ei,-s-lHTEi,j 
T > 

= 0 because equal to the jth column of 

plimTdm 
> 

in (29). 

Now, substituting (32) and (33) in (30) and (3 1) we have, for j = 1, . . - M, 

plim C~lyi~-lH~k;,-l 

Nm~,T-+oo 

plim 
N+cqT-+cc 

NT 

and since Ai and Ci are iid across i, by the law of large numbers, we also have 

for j = 1, - - - M, where E denotes expectation with respect the joint distribution of Ai and Ci. 

Therefore, substituting these last two expressions in (25), we obtain equation (15) in the text, 

(E [hi])-’ (E [Aiqi]> 
plim (z&E - a) = i 

' 
N-+KI,T-~ 

(E [Ai])-' (E [hf]) 1 
which is generally different from 0, unless rli = 0 for all i. 

B. A Special Case: Weak Exogeneity Fails 

Suppose that y = 0 in the bivariate VAR in equation (16), then (18) in the text becomes: 
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‘k,24 + T$Pir2Ji 

ril,3’2Ei ID 
with: 

r; = (1-x-p+xp)(l+x+p+xp)(xp-1) 
= -(l - X2)(1 - p2)(1 - Xp) 

r; = (Xp2 - A); 
r; = -(Xp+ 1); 
r; = (X2p - p); 

T,l = (-xp3+p2+xp- 1); 
Y$, = (-X3/l + x2 + xp - 1). 

Substituting for these expressions, which once divided by ‘Y’b simplify considerably, and defining 
6 = (lw~$~~~Ap) we have: 

0: + rqpqs + 2xPidi PPi7: 
-1 

(1-P) (l--P? (1-X2)(1-Xp) (l-Xp)(l-p2) + & 
PPiTf E 

(1-Xp)(l-p2) + (AP) 

2 
L 
l-p2 

I (PPd)Ei 

(1-XPW-P2) . 

Taking expectations with respect to the distribution of pi and denoting w the variance of pi we 
also have 

2xP4i 

(1-X2)(1-Xp) 
PPTf z 1 

-1 

(1-Xp)(l-p2) + (lQXp) 

& 
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Thus we get, 

APPENDIX I 

XFE - x 
N-!$cw JFE -p = ( ) 

2 
1 iTi- PPTS 

l-p2 - =---- 

[ 
A - PP7-8 

O-XP)(l-P2) - 
% 

yphg(--u~p) 

P 
API (1-P) + (l-P21 + (l-$tLp) 1 p!dT? 

x 0 [ %I (1-xP)o-P2) 

[ 

2 
1 

(4 ( 

pW? 
ZZ- 

l-p2 z > (l--XP)O-P2) 

A - 
( 

PPTf 
(1-Xp)(l-p2) + (Ap, z >( ’ )I. p&Jr? , 

(1-XPW-P2) 

where 

A= 

After some algebric simplifications we finally obtain 

with: 

*1 = (O”/T”) (1 - p2) (1 - xp)2 + (1 - x2p2) w + (1 - p”> p2; 

Q2 = -($“/T”) (I- p”) (1 - x2) - 2($/T) (1 - p2) (1 - X) p; 
Q3 = (4/T) (1 - p”> (1 - x2) pw. 

To study the sign of (35), write it as: 

(35) 

(36) 

where, 
q4 = p (1 - Xp) (1 - x”) w2,2> 
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and 
Q'5 = pp2 (1 - x2)w2,2. 

For 1x1 < 1 and IpI < 1, KU1 is always positive because sum of positive terms. Noting that a,2 is an 
incomplete linear equation of the second order in 4, it is easy to show that: 

KP’Z > 0 ifp>Oands<$<O, orifp<OandO<4<%, 
Q’z < 0 ifp>Oand4>Oor4<%, orif~<Oand~<Oor~>~, (37) 

and hence that, for 141 > 1%1, 9 2 is negative regardless of the sign of ,B. Note also that Qs > 0 
for #p > 0, and hence: 

lP’3 > 0 if#>Oandp>O, or4<Oandp<O, 
Q3 < 0 if$<Oandp>O, or$>Oandp<O. (38) 

Finally, it is evident that !IJJ > 0 for p > 0, and that Qs > 0 for ,B > 0. 

We can now see that, unlike the case in which C#I = 0, for any given value of p (which is the 
only determinant of the sign of *A under stationarity), the sign of the asymptotic bias of ~FE 
(determined by the sign of the term Qd/(\Ili + ‘z’z)) will change for a sufficiently large absolute 
value of the covariance term. This is because Q2 is negative for any 141 > 1% 1 and offsets Qi 
(which is always positive) for a sufficiently large value of 141 , while the sign of \-I4 is affected only 
by p. Suppose for insfance that p > 0, A = 0.6, r = 1, and IpI = 0.4, than for any 141 > 0.125 the 
large sample bias of X FE becomes negative, compounding rather than offsetting the small T bias 
of this estimator in finite samples. 

Similarly, the sign of the large sample bias of BFE‘, in the case in which C$ # 0, may be positive 
or negative, depending on the sign of p and 4 and the magnitude of c$. To see this, consider the 
term (%i+Q3)/(%+*2), which determines the sign of this bias. If p > 0 and both $ and 
p are either positive or negative, then (%I’5 + Q 3 ) is always positive because both Q,5 and 93 are 
always positive (see equations 37 and 38). However, if p > 0 and 4 > 0, *,2 is negative (see 
equation 37), and, for a sufficiently large value of c$, Q2 will offset Qi (which is always positive), 
thereby causing (es + \I13) / (Qi + \I-12) to change sign. It is straightforward to see that the same 
result holds also in the case in which p > 0 and both C#J and p are negative, for 4 sufficiently 
more negative than s. If ,L? < 0 and C#I and p have opposite signs, (Qa + Q3) is always negative 
because both Qs and \-I3 are always negative (see equations 37 and 38). However, (!l!i + Q2) will 
be negative only for 4 sufficiently smaller than 0 or more positive than s, thereby causing 
(\-Is + Q3) / (qi + Q2) to change sign at some point. 
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Figure 1: Heterogeneity Bias of p,, for y = 1 (in absolute value) 
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Figure 2: Heterogeneity Bias of p,, for y = 1 (in percent of true value) 
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Table 1. Monte Carlo Results (N,T=50,50) 
MG FE IV MG FE IV MG FE IV 

Omeg=O Omega=0.2 Omega=03 

Beta=0.2 

0.0196 0.0195 0.0861 0.0195 0.0193 0.0874 0.0178 0.0162 0.129 
-0.0246 -0.OZ4l 0.0001 -0.0244 -0.0247 -0.0039 -0.022, -0.0492 -0.0827 

0.0198 0.0195 0.0351 0.0198 0.0199 0.0355 0.0183 0.0341 0.0533 

0.1715 0.1866 0.1986 0.1718 0.1899 0.2017 0.1724 0.2614 0.2674 
0.0142 0.0141 0.0487 0.0189 0.014 0.0496 0.0518 0.0127 0.0783 

-0.0285 -0.0134 -0.w14 -0.0282 -0.0101 0.0017 -0.0276 0.0614 0.0674 
-14.3% -6.7% -0.7% -14.1% -5. I% 0.9% -13.8% 30.7% 33.7% 

1.8% 488% 
0.0144 0.014 0.0243 0.0193 0.0196 0.0278 0.0516 0.0657 0.0658 

Fi=+O.9 

0.0292 0.0291 0.0507 
0.0154 -0.0075 0.0015 
0.0301 0.0292 0.0325 

0.1516 0. I794 0.1977 
0.0209 0.0211 O.Wl5 

-0.0484 -o.ozcfJ -0.0023 
-24.2% -10.3% -1.2% 
0.0214 0.0209 0.0308 

0.0303 0.0299 0.3298 
-0.0741 -0.0493 -0.0018 

0.0301 0.0295 0.0883 

0.1435 0.1715 0.1981 
0.0213 0.0214 0.1776 

-0.0565 -0.0285 -0.0019 
-28.3% -113% -1.0% 
0.0212 0.0209 0.0512 

0.0291 0.0287 
0.015 0.0072 

0.0299 0.0298 

0.152 0.1743 
0.0243 0.021 
-0.048 -0.0257 

-24.0% -,.Z9% 
0.0247 0.0251 

Fi=-0.9 

0.0302 0.0295 
-0.0734 -0.0658 

0.0302 0.0302 

0.1437 0.1663 
0.0243 0.0212 

-0.0563 -0.0337 
-28.2% -16.9% 
0.0245 0.0249 

Beta=03 

0.052 0.0265 0.0236 0.0897 
0.007 0.0076 0.1933 0.0635 

0.0329 0.0275 0.0441 0.0456 

0.1894 0.1564 0.1258 0.0867 
0.0413 0.0534 0.0186 0.0416 

-0.0106 -0.0436 -0.0742 -0.1133 
-5.3% -21.8% -37.1% -56.7% 
0.0137 0.0538 0.0597 0.0727 

0.3239 0.0283 0.0241 0.3199 
-0.0242 -0.0624 -0.3 -0.2722 

0.0879 0.0292 0.0495 0.1084 

0.1936 0.1472 0.1134 0.1827 
0.1761 0.0523 0.0189 0.2039 

-0.0064 -0.0528 -0.0866 -0.0173 
-3.2% -26.4% -43.3% -8.7% 
0.0524 0.0522 0.0538 0.0665 

0.0119 0.0103 0.5832 0.0119 0.0103 0.726 0.0118 0.0086 0.9041 
-0.0282 -0.025 0.0032 -0.026'3 -0.0256 -0.0028 -0.0263 -0.0177 0.1019 

0.012 0.0106 0.1881 0.0121 0.0108 0.7508 0.012 0.0178 0.5751 

0.7474 0.778 0.8015 0.7474 0.7798 0.7988 0.7501 0.8309 0.9428 
0.0108 0.0094 0.522 0.0113 0.0093 0.6507 0.0168 0.008 0.8263 

-0.0526 -0.022 O.cill5 -0.0526 -0.0202 -0.wJl2 -0.0499 0.0309 0.1428 
-6.6% -2.8% 0.2% -6.6% -2.5% -0.2% -6.2% 3.9% 179% 

0.3% 6.2% 
0.011 0.0096 0.1688 0.0116 0.0104 0.6722 0.0171 0.0234 0.5238 

Fi=+O.9 
Lambda 
SC. 0.0238 0.0212 0.2685 0.0238 0.0211 0.2787 0.0235 0.0182 2.78 
3!d\ -0.0089 -0.022 0.0022 -0.009 -0.0216 0. oooa -0.0083 -0.0071 -0.1399 
S.d. 0.0238 0.0207 0.0644 0.0239 0.0208 0.067 0.0237 0.0242 5.8661 

BC$S 0.7339 0.7773 0.7993 0.7341 0.7784 0.8004 0.7363 0.8101 0.7146 
S.C 0.0216 0.0193 0.2413 0.0218 0.0192 0.2502 0.0252 0.0169 2.4414 
Bms -0.0661 -0.0227 -0.0007 -0.0659 -0.0216 O.OiKM -0.0637 0.0101 -0.0854 
i,,;I-~\'j~.ii~~.‘..;r -8.3% -2.8% -0.1% -8.2% -2.7% 0.1% -8.0% 1.3% -10.7% 
S.d. 0.022 0.019 0.0594 0.0223 0.0194 0.0614 0.0256 0.0266 5.3667 

Fi=-0.9 
Lambda 
Se. 0.0282 0.0248 42.7986 0.0282 0.0247 43.1479 0.0269 0.0127 0.316 
li,r; -0.0682 -0.0462 2.1192 -0.0681 -0.0484 -1.7058 -O.OSQ D.0091 0.0712 
Sd. 0.029 0.0259 94.3066 0.029 0.0262 28.8504 0.027 0.0264 0.1303 

Beta 0.7128 0.7592 2.6971 0.7131 0.7596 -0.7272 0.7239 0.8576 0.9149 
S.C 0.0254 0.0224 38.2932 0.0257 0.0224 38.7169 0.0284 0.0118 0.2899 
Bias -0.0872 -0.0408 I.8971 -0.0869 -0.0404 -1.5272 -0.0761 0.0576 0.1149 
i‘bi.!, bi 51 ri-7I.e I c:.,: -10.9% -J.I% 237.1% -10.9% -5.1% -191% -9.5% 7.2% 144% 
S.d. 0.0261 0.0232 84.360s 0.0264 0.0237 25.8701 0 0289 0.030* 0.1166 

Note - Se.:e&mated standard errors; 

Bias: absolute value of the finite sample bias (cqaal to the estimated parameter value in the case of lambda). 
S.d: finite sample bias’ experimental standard deviations. 
Fbias as % of true value: finite sample bias as a percentage of the true value of beta. 
Abii as % of true value: asymptotic bias as a percentage of the true value. 
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Table 2. Monte Carlo Results (N,T=20,50) 
MG FE IV MG FE IV MG FE IV 

Omeg=O Omega=0.2 Omega=03 

Beta=O.2 
Fi=O 

Lambda 
SC. 0.0312 0.0309 0.1366 0.031 0.0306 0.1387 0.0283 0.0259 0.2038 
g!L>?> 4024S -0.0241 -0.0007 -0.0243 -0.0247 -0.0047 -0.0227 -0.0468 -0.0805 
S.d. 0.0308 0.0304 0.0531 0.0304 0.0312 0.053 0.0273 0.0508 0.0805 

Beta 0.1731 0.1876 0.2001 0.1727 0.19 0.202 0.1713 0.2547 0.2585 
se 0.0222 0.0223 0.0775 0.0294 0.0222 0.0788 0.0811 0.0202 0.1244 
Bias -0.0269 -0.0124 0.000 I -0.0273 -0.01 o.cHl2 -0.0287 0.0547 0.0585 
i-S,>, L:\ Z',, (.! i"8.C "“:i,? -13.5% -62% 0.1% -13.7% -5.0% 1.0% -144% 27.4% 29.3% 
Abiaras%oftmevaluc 
S.d. 

. 
1.8% 48.8% 

0.0225 0.0227 0.0365 0.0295 0.031 0.0421 0.0811 0.102 0.1042 
Fi=+0 9 -. -._ 

0.0464 0.0459 0.0804 0.0462 0.0454 0.0825 0.0419 0.0376 0.1403 
0.0134 -0.0092 -0.0007 0.0131 0.0049 0.0044 a0053 0.1817 0.0571 
0.0444 0.0446 0.0499 0.0442 0.0449 0.0496 0.0405 0.0677 0.0658 

0.1539 0.1813 0.2014 0.1536 0.1755 0.1927 0.1557 0.1267 0.0918 
0.0329 0.0334 0.0661 0.0379 0.0332 0.0657 0.0836 0.0294 0.0675 

-0.0461 -0.0187 0.0014 -0.0464 -0.0245 -0.0073 -0.0443 -0.0733 -0.1082 
-23.IU -9.4% 0.7% -23.2% -12.3% -3.7% -22.2% -36.7% -54.1% 
0.0328 0.0336 0.0468 0.0373 0.0394 0.0514 0.0833 0.0914 0.1124 

Fi=-0.9 

0.0477 0.0472 0.5253 0.0477 0.0467 0.516 0.0446 0.0383 0.5204 
-0.0718 -0.0478 0.0014 -0.0714 -0.0632 -0.0214 -0.0612 -0.2837 -0.2616 

0.0493 0.0489 0.1318 0.0495 0.0497 0.13 0.0463 0.0772 0.1666 

0.146 0.1735 0.2015 0.1453 0.1678 0.1955 0.1465 0.1148 0.1765 
0.0333 0.0338 0.2832 0.0379 0.0335 0.2808 0.082 0.0299 0.3336 
-0.054 -0.0265 0.0015 -0.0547 -0.0322 -0.0045 -0.0535 -0.0852 -0.0235 

-27.0% -13.3% 0.8% -27.4% -16.1% -2.3% -26.855 -42.6% -11.8% 
0.0344 0.0348 0.077 0.0387 0.04 0.0788 0.0819 0.0846 0.1086 

Beta=03 
Fi=O 

Lambda 
Se. 0.0187 0.0164 1.6225 0.0187 0.0163 8.0411 0.0187 0.0139 6.0483 
i$iJ'. -0.0289 -0.0261 0.0263 -0.0289 -0.0266 1.4099 -0.0269 -0.0202 -0.6189 
S.d. 0.019 0.0166 I.3371 0.019 0.0168 49.8178 0.019 0.0242 26.1986 

B& 0.7485 0.7782 0.8236 0.7485 0.7798 2.0226 0.7507 0.8259 0.2549 
SC 0.017 0.0148 1.452 0.0177 0.0148 7.0503 0.0263 0.0129 5.6312 
Bias a.0515 -0.0218 0.0236 -0.0515 -0.0202 1.2226 -0.0493 0.0259 -0.5451 
I\,::,.. .I.; i,l ,,,ii i'li Jc -6.4% -2.7% 3.0% -6.4% -23% 152.8% -6.2% 3.2% -68.146 
Abias as%oftruevah~ 
S.d. 

0.3% 6.2% 
0.0172 0.0152 I.1904 0.0177 0.0161 43.2428 0.0261 0.0346 24.9263 

F;=+llo I I  .Y.l 

Lmnbda 

S.e. 0.0376 0.0336 0.4914 0.0376 0.0334 0.5352 0.0373 0.0292 6.9102 
Ilkas -0.0115 -0.0244 0.0041 0.0116 -0.0241 0.0038 -0.0107 -0.0105 -0.7107 
S.d. 0.0383 0.0327 0.1211 0.0382 0.0325 0.1628 0.0377 0.0358 30.7153 
Beta 0.7361 0.7788 0.8051 0.7361 0.7797 O.SU7l 0.7379 0.8078 0.2452 
S.S 0.0339 0.0305 0.4435 0.0343 0.0303 0.4819 0.0394 0.027 5.9619 
Bias -0.0639 -0.0212 0.0051 -0.0639 -0.0203 0.0071 -0.0621 0.0078 -0.5548 
I.%;,,+ 0 ::b vi:n,ic ~ hi.ic -8.0% -2.7% 0.6% 4.0% -15% 0.9% -7.8?4 1.0% -69.4% 
S.d. 0.0343 0.0298 0.1107 0.0344 0.0299 0.1486 0.0391 0.0381 26.1735 

o:- n n 
- 

Lambda 
S.C. 0.0441 0.0394 128.8833 0.044 0.0392 124.5329 0.0417 0.0223 7.3664 
*is;3 -0.0676 -0.0473 24474 -0.0672 -0.0492 -268017 -o.osn -0.002.5 -0.0769 
S.d. 0.0441 0.03% 799.2592 0.0439 0.0397 849.9118 0.04l5 0.0426 4.156 
Beta 0.7148 0.7588 24.4217 0.7151 0.7591 -22.9458 0.725 0.8432 0.7783 
S.C 0.0398 0.0356 115.0735 0.04 0.0355 110.5616 0.0441 0.0207 6.555 
Bias -0.0852 -0.0412 23.6217 -0.0849 -0.0409 -23.7458 -0.075 0.0432 -0.0217 
;:'..I‘<.. ^? o:.tnic '.;A!: -10.7% -5.2% 2952.7% -10.6% -II% -2963% -9.4% 5.4% -2.7% ,” __-..- 
S.d. 0.0403 0.0361 713.181 0.0407 0.0366 753.1006 0.045 0.0515 3.7241 

Note . Se .: estimated standard errors; 
Bias: absolute value of the finite sample bias (equal to the estimated parameter value in the case of lambda). 
S.d.: finite sample bias’ experimental standard deviations. 
Fbias as % of true value: finite sample bias as a percentage of the true value of beta. 
Abias as % of true value: asymptotic bias as a percentage of the tme value. 



- 39 - 

Table 3. Monte Carlo Results (N,T=10,50) 
MG FE IV MG FE IV MG FE IV 

Omeg=O Omega=0.2 Omega=0.8 

Beta=0.2 
Fi=O 

0.0424 0.0438 0.192 0.042l 0.0433 0.1953 0.0382 0.0368 0.2945 
-0.0235 -0.0227 -0.0005 -0.0236 -0.0236 -0.005 -0.0221 -0.0444 -0.0804 

0.0437 0.0434 0.0751 0.0432 0.0444 0.0756 0.0397 0.0681 0.1267 

0.1719 0.1859 0.1957 0.1717 0.1882 0.1974 0.1706 0.2449 0.2414 
0.031 0.0316 O.lWI 0.0418 0.0314 0.1113 0.115 0.0287 0.1841 

-0.0281 -0.0141 -0.0043 -0.0283 -0.0118 -0.W26 -0.0294 0.0449 0.0414 
-14.1% -7.1% -2.2% -14.2% -5.9% -1.3% -I4755 22.5% 20.7% 

1.8% 488% 
0.0315 0.0312 0.0535 0.0424 0.0438 0.0627 0.1158 0.1425 0.1504 

Fi=+0.9 
LUhdS 
S.S. 0.0634 0.0651 0.1128 0.0629 0.0643 0.1159 0.0573 0.0534 0.1957 
U!ir. 0.0162 -0.0047 0.0037 O.OI54 0.0085 0.0087 0.0078 0.1707 0.0529 
S.d. 0.066 0.0656 0.0721 0.0656 0.0662 0.072 0.0599 0.0926 0.0954 

Bsta 0.1518 0.1775 0.194 0.152 0.1722 0.1851 0.155 0.1256 0.0863 
SC 0.0457 O&474 0.0932 0.0533 0.047 0.0929 0.1184 0.0418 0.0996 
Bias -0.0482 -0.0225 -0.006 -0.048 -0.0278 -0.0149 -0.045 -0.0744 -0.1137 
! brl, ac 'ii, ,'! IC<ii. I~,?,,:‘, -24. I46 -11.3% -3.0% -24.0% -13.9% -7.5% -22.5% -37.2% -569% 
S.d. 0.0468 0.0471 0.0683 0.0546 0.0558 0.0749 0.1193 0.131 0.1574 

Fi=aO 

0.0659 0.0669 0.741 0.0656 0.0661 0.7337 0.0609 0.0546 0.8846 
-0.0721 -0.0491 -0.01 -0.0718 -0.0647 -0.0335 -0.0617 -0.2692 -0.2559 

0.0664 0.0658 0.1922 0.0661 0.0666 0.193 0.0621 0.1056 0.4Ol9 

0.1445 0.1704 0.1921 0.1442 0.1648 0.1859 0.1457 0.112 0.1624 
0.0465 0.0479 0.3994 0.0534 0.0475 0.4002 0.1156 0.0426 0.5923 

-0.0555 -0.02% -0.0079 -0.0558 -0.0352 -0.0141 -0.0543 -0.088 -0.0376 
-27.8% -/4.8% -4.0% -27.9% -17.6% -7.1% -27.2% -440% -18.8% 
0.0465 0.0467 0.1135 0.0536 0.0553 0.1191 0.1165 0.122 0.3062 

Beta=03 

0.0259 0.0234 572 
-0.0271 -0.0243 81.3346 

0.0277 0.0247 2577.9821 

0.7467 0.775 74.17 
0.0238 0.0212 516.0427 

-0.0533 -0.025 73.37 
-4.7% -3.1% 9171.3% 

0.0249 0.022 2325.9178 

R=O 

0.026 0.0233 3.3038 0.0257 0.0203 3.3195 
-0.0271 -0.0249 D.1447 40249 -0.0201 0.2187 

0.0276 0.025 3.6137 0.0269 0.0329 3.8278 

0.7465 0.7764 0.9271 0.7491 0.8161 1.0382 
0.0248 0.0211 2.9555 0.0371 0.0188 3.0166 

-0.0535 -0.0236 0.1271 4.0509 0.0161 0.2382 
-6.7% -3.G% 119% -44% 2.0% 29.8% 

0.3% 62% 
0.0257 0.0233 3.2442 0.0376 0.0475 3.5335 

Fi=+O.9 
Lambds 
S.C. 0.052 0.048 I.0914 0.052 0.0477 1.6528 0.0514 0.0422 3.2541 
I?:;/\ -0.005 -0.0187 0.0259 -0.00s -O.OIBS 0.0228 -0.004 4.0078 0.2363 
S.d. 0.0545 0.0493 0.6187 0.0543 0.0494 I.1718 0.0532 0.0513 6.361 

Beta 0.7313 0.772 0.8133 0.7312 0.7728 0.8112 0.7331 0.7982 1.0633 
SX 0.0473 0.0435 0.979 0.048 o.w33 1.4716 0.0556 0.0389 2.9755 
BlaS -0.0687 -0.028 0.0133 -0.0688 -0.0272 0.0112 -0.0669 -0.0018 0.2633 
ko,.‘, ,a\ ':,..,/ IhiS iB,i c -4.6% -3.5% 1.7% -8.6% -3.4% 1.4% -8.4% -0.2% 32.9% 
Sd. 0.0498 0.@442 0.5826 0.0499 0.0448 I.0444 0.0565 0.0571 6.3401 

Fi=-0.9 
Lambda 
S.C. 0.0615 0.0562 21.8603 0.0614 0.0559 43.93 0.0582 0.0359 5.0536 
Il% -0.0667 -0.0464 42119 -0.0665 -0.M83 11.9799 -0. 0571 -0.015 0.358 
S.d. 0.0647 0.0574 7.0411 0.0644 0.0575 373.4841 0.0613 0.06 3.7825 

BCta 0.7136 0.756 0.6051 0.7136 0.756 II.4596 0.7233 0.8221 I.1569 
S.C 0.0558 0.0508 19.5658 0.0561 0.0506 39.2048 0.0619 0.0331 4.528 
Bias -0.0864 -0.044 -0.1949 -0.0864 -0.044 10.65% -0.0767 0.0221 0.3569 
I‘sins OS 'n 21‘ Li ii ilbd -10.8% -5.5% -214% -10.8% -5.5% I332% -9.6% 2.8% 446% 
S.d. 0.0582 0.0518 6.2987 0.0583 0.0523 332.3963 0.0637 0.0714 3.3687 

Note - Se .: estimated standard errors; 
Bias: absolute value of the finite sample bias (equal to the estimated parameter value in the case of lamb&). 
S.d.: finite sample bias’ experimental standard deviations. 
Fbias as % of true value: finite sample bias as a percentage of the hue value of beta. 
Abias as % of true value: asymptotic bias as a percentage of the true value. 
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Table 4. Monte Carlo Results (N,T=50,20) 
MG FE IV MG FE IV MG FE IV 

Omeg=O Omega=0.2 Omega=0.8 

Beta=0.2 

La&da 
SC. 
Bias 
S.d. 

Beta 
S.C 
Bias 
Fbias a*%oftNevalue 
Abiasas%oftmcvalue 
S.d. 

LBmbdS 
se. 
BiaS 
S.d. 

Beta 
s.c 
Bias 
Fbissas%oftmcvalus 
S.d. 

0.0318 0.0317 0.1369 
-0.0591 -0.0582 0.0061 

0.0328 0.0322 0.0629 

0.133 0.1679 0.2014 
0.0235 0.0228 0.0775 
-0.067 -0.0321 0.0014 

-33.5% -16.1% 0.7% 

0.0235 0.0229 0.0434 

0.0473 0.0462 0.0806 
0.0349 -0.019 0.0057 
0.0488 0.0474 0.0539 

0.0858 0.1504 0.2004 
0.0336 0.034 0.0659 

-0.1142 -0.0496 0.0004 
-57./M -248% 0.2% 
0.0338 0.0335 0.0529 

Fl=O 

0.0316 0.0314 0.1391 0.0293 0.0269 0.2116 
-0.0.585 -0.OJ96 0.0024 -0.0547 -O.lIll -0.0837 

0.0326 0.0328 0.063 0.0301 0.0493 0.1108 

0.133 0.17 0.204, 0.133 0.2175 0.2632 
0.0262 0.0227 0.0788 0.0527 0.02, 0.128 
-0.067 -0.03 O.OC41 -0.067 0.0175 0.0632 

-33.5% -15.0% 2.1% -33.5% 8.8% 31.6% 
1.8% 48.8% 

0.0257 0.026 0.0461 0.0509 0.0665 0.0922 
Fi=+O.9 

0.047l 0.0457 0.0829 0.0436 0.038, 0.1459 
0.034 -0.0059 0.0115 0.0148 0.1367 0.0624 

0.0487 0.0475 0.0539 0.0455 0.0568 0.0874 

0.0861 0.1444 0.1915 0.0954 0.0843 0.0853 
0.0354 0.0338 0.0655 0.057 0.0299 0.0665 

-0.1139 -0.0556 -0.0085 -0.1046 -0.1157 -0.1147 
-57.0% -27.8% -4.3% -52.3% -57.9% -57.4% 

0.035 0.0354 0.0545 0.055 0.0641 0.0871 
Fi-II9 

Lambda 
S.C. 0.0501 0.0493 0.5291 0.0502 0.0487 0.5191 0.0496 0.0397 0.5309 
Bias -0.1774 -0.1198 0.0089 -0.1763 -0.136 -0.0131 -0.1519 -0.374 -0.2682 
S.d. 0.0505 0.0497 0.1961 0.0505 0.0506 0.1917 0.0506 0.0707 0.2345 

Beta 0.0657 0.1308 0.203 0.0653 0.1249 0.1982 0.0721 0.0614 0.182, 
S.e 0.0345 0.0349 0.285 0.0361 0.0346 0.2821 0.0565 0.0309 0.3381 
Bias -0.1343 -0.0692 0.003 -0.1347 -0.0751 -0.WI8 -0.1279 -0.1386 -0.0179 
Fbias as % oftme value -67.2% -346% 1.5% -67.4% .37.6% 49% -60.0% -69.3% -9.0% 
Sd. 0.0344 0.0343 0.1118 0.0355 0.0357 0.1116 0.0552 0.0548 0.1508 

Beta=0.8 

Lambda 
S.C. 
Bias 
S.d. 

BCtn 
S.S 
Biar 
Fbinsas%ofmevalus 
Abii~%oftmevaIue 
S.d. 

0.0228 0.0188 3.7494 0.0228 0.0187 3.5867 0.0227 0.0166 3.9044 
-0.0746 6.0679 0.1404 -00746 -00687 -@,72I -0.0704 -0.0663 -0.2768 

0.0233 0.0194 4.3626 0.0233 0.0196 5.015 0.0229 0.0249 8.2833 

0.6795 0.7417 0.9232 0.6796 0.743 0.6072 0.6853 0.7864 0.5948 
0.021, 0.017 3.3473 0.0213 0.0169 3.2269 0.0246 0.0153 3.5664 

-0.1205 -0.0583 0.1232 -0.1204 -0.057 -0.1528 -0.1147 -0.0136 -0.2052 
-III% -7.3% 15.4% -15. I% -7.1% -19.1% -14.3% -1.7% -217% 

0.3% 62% 
0.0207 0.0183 3.8959 0.021 0.0186 4.4779 0.0244 0.0278 7.5651 

Fi=+fl9 
Lambda 
S.C. 0.042l 0.0343 1.0586 0.0421 0.0341 3.9655 0.0418 0.03 3.4717 
Bias -0.0353 -0.0615 0.0396 -0.0353 -0.0615 0.7848 -0.0324 -0.0579 o.m13 
S.d. 0.042 0.0325 1.6292 0.0418 0.0325 24.2%6 0.041 0.0338 17.0949 

Beta 0.6531 0.7412 0.8357 0.6532 0.742 1.474 0.6574 0.7706 I.4006 
S.C 0.0385 0.0312 0.9543 0.0386 0.0311 3.4341 0.0405 0.0277 3.1393 
BhS -0.1469 -0.0588 0.0357 -0.1468 -0.058 0.674 -0.1426 -0.0294 0.6006 
Fbias as %oftmevalue -18.4% -7.4% LS% -18.4% -7.3% 8096 -27.8% -3.7% 75.1% 
S.d. 0.0376 0.0302 1.5258 0.0375 0.0302 20.8421 0.0388 0.0324 15.9502 

Fi=-0.9 
Lambda 
S.S. 0.0583 0.13483 16.2352 0.0583 0.042 14.7817 0.0552 0.0292 0.3055 
Bias -0.1699 -0.1231 0.5404 -0.1695 -al259 0.5422 -0.147, -0.0454 0.06 
S.d. 0.0589 0.0498 IS.0415 0.059 0.05 17.8643 0.0564 0.0487 0.1114 

B&l 0.5966 0.6923 1.2844 0.5972 0.6918 us77 0.6216 0.8078 0.903 I 
S.C 0.0528 0.0436 14.5323 0.0529 0.0435 13.2459 0.0527 0.0271 0.2802 
Bh.5 -0.2034 -0.1077 0.4844 -0.2028 6.1082 0.4877 -0.1784 0.0078 0.1031 
Fbiian%ofhucva,ue -2J.4% -13.5% 61X6% -25.4% -13.5% 61% -22.3% ,.O% 12.9% 
S.d. 0.0541 0.0456 16.1269 0.0544 0.0458 16.0029 0.0547 0.0499 0.1011 

Note - S.e .: estimated standard errors; 
Bias: absolute value of the finite sample bias (equal to the estimated parameter value in the case of lambda). 
Sd.: finite sample bias’ experimental standard deviations. 
Fbias as % of true value: finite sample bias as a percentage of the true value of beta 
Abias as % of true value: asymptotic bias as a percentage of the true value. 
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Table 5. Monte Carlo Results IN.T=20.20 
MG FE IV MG FE IV 

Omega=0 Omega=0.2 
MG FE IV 

Omega=0.8 

BeLHJ.2 
Fi=O 

0.0502 0.0501 0.2154 0.0499 0.0497 0.2185 0.0463 0.0428 0.3428 
.O,!%! 0 r,ti ". 07/,5 .>I !I??,; .(;Ob:: ij ,x.,,; ..,, ,;j:y -i: : (,,.' ,;.(j9;; 

0.0491 0.0491 0.0998 0.0487 0.0497 0.1012 0.0457 0.0729 0.191 

0.1345 0.1679 0.1975 0.1345 0.1697 0.2 0.1337 0.2117 0.2481 
0.0365 0.0361 0.1221 0.041 0.036 0.1241 0.083 0.0333 0.209 

-0.0655 -0.0321 -0.0025 0.0655 -0.0303 0 -0.0663 0.0117 0.0481 
-3.'.?%. .,l.,Y -.I. 31,; -.;2 ;c*d, _ :' &$ !), ;q<: 4.; 7"" .T i':, ;j, ia, 

1.80% 48.76% 
0.0365 0.0352 0.0676 0.0405 0.0409 0.0718 0.081 0.1015 0.1505 

!=i=Ml9 
Lambda 
S.S. 
IlLd, 
S.d. 

Beta 
S.e 
Bias 
!bi.l, i!\ ':..of~,w >dwe 
S.d. 

Lambda 
S.C. 
l>ias 
S.d 

Bet.? 
S.C 
Bias 
/ IVI, :L+ "T, or I::*:; i3i.X 
S.d. 

Lambda 
Se. 
ltl7.w 
S.d. 

Beta 
St 
Bias 
I hirr :;i ": ,,i t:w sz,i'z 
Abianas%oftluevalue 
S.d. 0.034 0.0277 7.0965 0.0342 0.0281 8.5703 0.0385 0.0408 467.964 

Fisul9 

0.0737 0.073 0.1267 0.0734 0.0722 0.1298 0.068 0.0603 0.2248 
I< $?:,< .:. !,Jj.< 0 ire,;', ri. '>in.: .,,f%,VI CJ :;<j; Cj, W;J j 3 !IjJ ', id", 

0.0713 0.0711 0.0832 0.0713 0.0718 0.0839 0.0674 0.0848 0.1435 

0.0881 0.151 0.1967 0.0883 0.1454 0.1884 0.0962 0.0867 0.0827 
0.0521 0.0538 0.1045 0.0552 0.0534 0.1039 0.0898 0.0474 0.1085 

-0.1119 -0.049 -0.0033 -0.1117 -0.0546 -0.0116 -0.1038 -0.1133 -0.1173 
-5': ')"> .2; .V6 i 7. Gj.7'. I .&!YJ‘Jj . ..S.h ;$ ': '>,,< i(,. .i.. . ..y -.'o 

0.0522 0.0526 0.0802 0.0548 0.0569 0.0831 0.0882 0.1027 0.1351 
FkO.9 

0.0791 0.0781 0.8462 0.0791 0.0771 0.83 0.0778 0.0633 0.9303 
.,I ,, T,+ ..I! 12,' .-0 w,;i; G. i 7T.C .I,, , .z :, .,i: rr., '6 .ii ,iji 4,. ?b.J7 -0 .',7: 

0.0801 0.0785 0.3038 0.0802 0.0791 0.3051 0.0787 0.1074 0.5034 

0.0675 0.1312 0.1952 0.0674 0.125 0.19 0.0732 0.0607 0.1667 
0.0539 0.0552 0.4559 0.0565 0.0548 0.4512 0.0886 0.049 0.5947 

5.1325 -0.0688 -0.0048 XI.1326 -0.075 -0.01 -0.1268 -0.1393 -0.0333 
-KM ..?.‘..,Z -?, 47,; -64 .Pr, -37 .I% -5 I3 .h i .i",> .n:, 7, -iii. :7.* 
0.0549 0.0546 0.1716 0.057 0.0572 0.175 0.087 0.0873 0.3248 

BetEo.8 
FiFO 

0.0355 0.0299 4.7085 0.0356 0.0298 5.0015 0.0353 0.0269 56.9449 
.ri.f)Tj 7 .iil!hSY (! li!!jJ .0..(,,7.,.\‘ .,i.!,h!)'J .,l.J2J! .I,,;r?; -0 (IiliZ -:; Y2j.i 

0.0354 0.0305 8.0247 0.0352 0.0306 9.5895 0.0344 0.036 505.1086 

0.6807 0.7396 0.8012 0.6806 0.7408 0.4154 0.6853 0.7784 -13.822 
0.0328 0.027 4.1968 0.0331 0.027 4.4947 0.0382 0.0248 52.6981 

-0.1193 -0.0604 0.0012 -0.1194 -0.0592 -0.3846 -0.1147 -0.0216 -14.622 
-, i '>L< -7. (,A: ,i, 2% * -:; e-4, .:.&z J.?. ! x ,./.J ,y‘, -,:, Try -:*.'7.*1 

11 30,s. O.?W% 

0.0659 0.0547 1.7056 0.066 0.0545 2.3262 0.0653 0.0485 3.9622 
.,,I !iV>4 ..ii ire,. ii,,,-j /i,!?.lf.' .,r "(1 : J .,:, 'Pi\. 7 'I.!,.?4 .ii.ni~c a ri",C, 

0.0657 0.0502 1.5336 0.0653 0.0498 3.5297 0.0647 0.0503 4.6627 

0.6541 0.7388 0.8136 0.6538 0.7396 0.6908 0.6564 0.7642 0.8488 
0.0601 0.0499 1.5339 0.0603 0.0496 2.1583 0.0629 0.0447 3.296 

-0.1459 -0.0612 0.0136 -0.1462 -0.0604 -0.1092 -0.1436 -0.0358 0.0488 
,/ii.;'? ,7 7% i. -x j&i. .js, 7 w.: ;.: z-6 i.s 0% ..I .5?, 6 ix 
0.0636 0.0469 1.3586 0.0635 0.047 3.6605 0.0648 0.0514 3.5815 

Fk-O.9 

0.0905 0.0770 21.6392 0.0994 0.0768 16.4314 0.0859 0.0508 1.0953 
..t, ; :.y:r ..ii ,a;, ..O iS0.j 0. : 7 i 9 .,, ,>r.i il T,,,.? 1 1 <>' .i .o.M-i<X '1 :.:7- 

0.0914 0.0789 33.8497 0.09Q9 0.0789 23.7062 0.0868 0.0774 2.6257 

0.5961 0.6882 0.6630 0.5967 0.6877 I.4318 0.6183 0.7852 0.9633 
0.0820 0.0695 19.3838 0.0820 0.0694 14.7180 0.0820 0.0469 0.9944 

-0.2039 -0.1118 -0.1370 -0.2033 -0.1123 0.6318 -0.1817 -0.0148 0.1633 
-2s .j"< -,J ,k',> .:':"J+, :,j. .J); ^ j ; 'j',< 7j 3,"~ : :. v ^ f, jj,; i() p> 

0.0835 0.0710 30.3672 0.0832 0.0710 21.3443 0.0819 0.0778 2.3588 

Note - S.e .: estimated standard errors; 
Bias: absolute value of the finite sample bias (equal to the estimated parameter value in the case of lambda). 
Sd.: finite sample bias’ experimental standard deviations. 
Fbias as % of true value: finite sample bias as a percentage of the true value of beta. 
Abias as % of true value: asymptotic bias as a percentage ofthe true value. 
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