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I. INTR~DUC~~N 

Many empirical studies of the growth of countries attempt to identify the factors 
explaining the differences in growth rates by regressing observed GDP growth on 
a host of country characteristics that could possibly affect growth. This line of 
research was heavily influenced by Kormendi and Meguire (1985) and Barro (1991). 
Excellent recent surveys of these cross-section studies and their role in the broader 
context of economic growth theory are provided in Durlauf and Quah (1999) and 
Temple (1999). 

In this paper we focus on cross-country growth regressions and attempt to shed 
further light on the importance of such models for empirical growth research. 
Prompted by the proliferation of possible explanatory variables in such regressions 
and the relative absence of guidance from economic theory as to which variables 
to include, Levine and Renelt (1992) investigate the “robustness” of the results 
from such linear regression models. They use a variant of the Extreme-Bounds 
Analysis (EBA) introduced in Learner (1983, 1985) and conclude that very few re- 
gressors pass the extreme-bounds test. In response to this rather negative finding, 
Sala-i-Martin (1997b) employs a less severe test for the importance of explanatory 
variables in growth regressions. He considers the distance of the point estimates 
from zero, averaged over a set of regression models. Broadly speaking, if the aver- 
aged1 90 percent confidence interval of a regression coefficient does not include zero, 
Sala-i-Martin will classify the corresponding regressor as a variable that is strongly 
correlated with growth. On the basis of this methodology, Sala-i-Martin (1997b) 
identifies a relatively large number of variables as important for growth regression. 

Here we set out to investigate this issue in a formal statistical framework that 
explicitly allows for the specification uncertainty described above. In particular, a 
Bayesian framework allows us to deal with both model and parameter uncertainty 
in a straightforward and formal way. We also consider an extremely large set of 
possible models by allowing for any subset of up to 41 regressors to be included in the 
model. This means we have a set of 2 41 = 2 2 x 1Or2 (over two trillion!) different . 
models to deal with. Novel Markov chain Monte Carlo (MCMC) techniques are 
adopted to solve this numerical problem, using the so-called Markov chain Monte 
Carlo Model Composition (MC3) technology, first used in Madigan and York (1995). 

Our findings are based on the same data as those of Sala-i-Martin2 and broadly 
support the more “optimistic” conclusion of Sala-i-Martin (1997b), namely that 

1 In one case he considers the confidence interval on the basis of the averaged estimates, and in 
another case he averages over confidence intervals. Averaging over models is either done uniformly, 
or with weights proportional to the likelihoods. See also footnote 11 in this context. 

2 We thank Xavier Sala-i-Martin for making the data publicly available through his website at 
http: //www.columbia.edu/~xs23/data/millions.htm. 
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some variables are important regressors for explaining cross-country growth pat- 
terns. However, the variables we identify as most useful for growth regression differ 
substantially from his results. In addition, we do not advocate selecting a subset of 
the regressors, but we use Bayesian Model Averaging (BMA), where all inference is 
averaged over models, using the corresponding posterior model probabilities. It is 
important to point out that our methodology allows us to go substantially further 
than the previous studies, in that we provide a clear interpretation of our results 
and a formal statistical basis for inference, both posterior and predictive. Finally, 
let us note that this paper is solely intended to investigate the issue of choice of 
regressors and inference in cross-country growth regressions. It does not attempt to 
address here the myriad of other interesting topics, such as convergence of countries, 
data quality etc. 

II. THE MODEL AND THE METHODOLOGY 

Following the analyzes in Levine and Renelt (1992) and Sala-i-Martin (199710) 
as well as the tradition in the growth regression literature, we will consider linear 
regression models where GDP growth for n countries, grouped in a vector y, is 
regressed on an intercept, say CX, and a number of explanatory variables chosen 
from a set of lo variables in a matrix 2 of dimension n x Ic. Throughout, we assume 
that rank(L n : 2) = k + 1, where L, is an n-dimensional vector of 1’s. 

Whereas Levine and Renelt and Sala-i-Martin restrict the set of regressors to 
always contain certain key variables and then allow for four3 other variables to be 
added, we shall allow for any subset of the variables in 2 to appear in the model. 
This results in 2k possible models, which will thus be characterized by the selection 
of regressors. We call model &!j the model with the 0 5 l~j 5 lo regressors grouped 
in Zj, leading to 

y = QL, + zjp.j + O-E, (1) 
where ,0j E Zkj groups the relevant regression coefficients and 0 E %+ is a scale 
parameter. Furthermore, we shall assume that E follows an n-dimensional Normal 
distribution with zero mean and identity covariance matrix. 

In our Bayesian framework, we need to complete the above sampling model with 
a prior distribution for the parameters in &$, namely a, ,0j and g. Fernandez, Ley, 
and Steel (1998) study the issue of choosing the prior distribution in such a way 
that the prior is little informative on the resulting Bayes factors. They propose 
to use improper noninformative priors for the parameters that are common to all 
models, namely c\! and 0 and a g-prior structure for ,0j: 

3 .Levine and Renelt (1992) consider one up to four added regressors, Sala-i-Martin (1997b) 
restricts the analysis to exactly four extra regressors. 
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where j&(w 1 m, V) d enotes the density function of a q-dimensional Normal dis- 
tribution on w with mean m and covariance matrix V. Fernandez, Ley, and Steel 
(1998) conclude on the basis of a simulation study and theoretical properties that 
a reasonable choice for goj is given by gaj = k, for cases where the number of 
observations, n, is relatively small (like in the present application). 

In order to fully specify the prior distribution under model A4j, we group the 
irrelevant components of p under A4j in a vector ,&j E gk--lcj. The latter vector 
follows a Dirac distribution at zero, i.e., 

Ppwj ja,pjrarMj = Ppwj 1 Mj = Dirac at (0,. . . ,O). (3) 

Denoting the space of all 2’ possible models by M, we finally put a prior distri- 
bution over this model space M 

2” 

P(Mj)=pj, j=l,..., 2’, withpj>Oand cpj=l. 
j=l 

(4) 

We can now use the Bayesian paradigm to deal with model uncertainty in a 
perfectly straightforward way, since the posterior or predictive distribution of any 
quantity of interest, say A, is a mixture of the posterior or predictive distributions 
of that quantity under each of the models with mixing probabilities given by the 
posterior model probabilities. Thus 

2” 

P - AIY - c pA Iy,Mjp(& 1 3). (5) 
j=l 

This procedure, which is typically referred to as Bayesian model averaging (BMA), 
immediately follows from the rules of probability theory-see, e.g., Learner (1978). 

The posterior model probabilities used in (5) are given by 

where Zy(Mj), the marginal likelihood of model A/&j) is obtained as 

with p(y 1 01, /3j, 0, A4j) the sampling model in (1) and p(c~, /?j, CJ I A&j) the prior de- 
fined in (2). F ernandez, Ley, and Steel (1998) show that for the particular Bayesian 
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model in (1) - (4) th e ratio of the marginal likelihoods, usually known as the Bayes 
factor, Bj, = Zy(h!l~)/Zy(Ads), can be computed analytically. In the somewhat sim- 
plifying case where we assume, without loss of generality, that the regressors are 
transformed such that LIZ = 0, and defining Xj = (Lo : Z,), %j = &y/n and 
iUxj = 1, - Xj(X;Xj)-lx,‘-, they obtain 

Bjs zz (go;y 1)k”2 (go;; l)ks'2 x 

G$d~xsY + $f$ (Y - P,)‘(y - YL,) (n-1)/2 
1 

‘“x,Y + goyo+l L(Y - j&)'(y -j-J&) ) 
> 

goj+1y 

(8) 

if kj > 1 and k, > 1. If one of the models, say iVlj, is the model with only the 
intercept (i.e., kj = 0), the Bayes factor is simply obtained as the limit of Bj, in 
(8) as goj tends to infinity. 

In practice, computing the relevant posterior or predictive distribution through 
(5) and (6) is hampered by the very large amount of terms in the sums. In the 
most demanding case (subsection 3.2), we have k = 41 possible regressors, and we 
would thus need to calculate posterior probabilities for each of the 241 = 2.2 x 1Or2 
models and average the required distributions over all these models. In order to 
substantially reduce this prohibitive computational effort, we shall approximate 
the posterior distribution on the model space M by simulating a sample from it, 
applying the MC3 methodology of Madigan and York (1995). This consists in a 
Metropolis-Hastings algorithm-see, e.g., Chib and Greenberg (1996)-to generate 
drawings from a Markov chain on M which has the posterior model distribution as 
its stationary distribution. Raftery, Madigan, and Hoeting (1997) and Fernandez, 
Ley, and Steel (1998) use MC3 methods in the context of the linear regression model. 

In the implementation, we shall take advantage of the fact that for each pair 
of models, the Bayes factor can be computed analytically through (8). Thus, we 
shall use the chain to merely indicate which models should be taken into account 
in computing the sums in (5) and (6). This idea was introduced as Bayesian Ran- 
dom Search (BARS) in Lee (1996). In addition, Fern&dez, Ley, and Steel (1998) 
propose to use this as a convenient indicator for convergence of the chain. A high 
positive correlation between the posterior model probabilities based on the empiri- 
cal frequencies of visits on the one hand, and the exact formula in (8) on the other 
hand, provides strong evidence of convergence. 
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111. POSTERIOR RESULTS 

We take the same data as used and described in Sala-i-Martin (199713)) covering 
140 countries, for which average per capita GDP growth was computed over the 
period 1960-92. Sala-i-Martin starts with the model in (1) and a large set of 62 
variables that could serve as regressors. He then restricts his analysis to those 
models where three specific variables are always included (these are the level of 
GDP, life expectancy, and primary school enrollment rate, all for 1960) and for 
each of the remaining 59 variables he considers the estimated regression coefficient, 
while adding all possible triplets of the remaining 58 variables. He finally computes 
CDF(0) for this coefficient, which reflects the distance from zero (in the predominant 
direction) of the estimated values, averaged over all these possible regressions, to 
conclude that 22 of the 59 variables are “significant,” in that CDF(0) is at least 
0.95. Thus, he considers 455,126 different models4 which we will denote by MS. 

A. The Reduced Set of Regressors 

We shall first undertake our analysis on the basis of the 25 variables that Sala- 
i-Martin (199713) flagged as being important (his three retained variables and the 
22 variables in his Table 1, page 181). We have available n = 72 observations for 
all these regressors. Thus, 2 will be the 72 x 25 design matrix corresponding to 
these variables (transformed by subtracting the mean, so that &Z = 0), and we 
shall allow for any subset of these 25 regressors, leading to a total set of 225 = 33.6 
million models under consideration in M. Since we do not start from the full set 
of 62 variables, we do not cover all models in Ms. However, we cover the subset of 
MS that corresponds to the regressors favored by Sala-i-Martin. This intersection 
between M and MS consists of 7,315 models and will be denoted by MI in the 
sequel. In view of the results in Sala-i-Martin (1997b), we would certainly expect 
that a relatively large fraction of the posterior mass in MS is concentrated in Mr. 

To analyze these data, we use the Bayesian model in (l)-(4) with a Uniform 
prior on model probabilities, i.e., pj = 22” in (4). We run the MC3 sampler for 
100,000 draws as a burn-in and record the next 500,000 draws in model space M. 
That the sampler has converged is confirmed by the very high correlation between 
the frequencies of recorded model visits and the probabilities based on (8) (it equals 
0.975 in a representative run). In addition, various long runs from randomly chosen 
starting values led to virtually identical results. In a typical run, we visit 67,684 
models (i.e., about 0.2 percent of the total number) and posterior model probability 
is quite spread: the best model, which contains 13 regressors, obtains a posterior 

* Note that the (almost) 2 million regressions in the title of his paper result from counting the 
same models twice, since he distinguishes between identical models according to whether a variable 
is being “tested” or merely added in the triplet. See also his footnote 3. 
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probability of 0.81 percent, and it takes 20,274 models to account for 90 percent of 
the posterior mass. This makes a very strong case for conducting inference on the 
basis of BMA-as in (5)-rather than on one particular model. The 7,315 models 
in MI, corresponding to the most favored models in Sala-i-Martin (1997b) jointly 
obtain only 0.0021 percent of the total posterior mass. Interestingly, this is only 
one tenth of the prior mass assigned to MI, reflecting serious doubts about the 
adequacy of Ms. In other words, the specific set of models with three retained 
regressors and exactly four additional regressors, considered in Sala-i-Martin, is not 
at all favored by the data. In fact, we find that all of the 45 models with posterior 
probabilities of at least 0.1 percent (which jointly account for 9.01 percent of the 
posterior mass) have in between 10 and 15 regressors. 

Table 1 presents the posterior probabilities of including each of the 25 possible 
regressors.5 A first observation is that the primary school enrollment rate is only 
included with probability 0.36, whereas it was always retained in MS (such variables 
are preceded by a double arrow in the table). The probabilities of inclusion of the 
22 preferred variables of Sala-i-Martin (1997b, Table 1) vary widely. Whereas some 
variables are almost always included (fraction Confucian, equipment in investment, 
sub-Saharan dummy, fraction Muslim, and fraction GDP in mining), quite a few 
have very low probabilities of inclusion (political rights, exchange rate distortions, 
Spanish colony, war dummy, latitude, and revolutions and coups). The rest are 
assigned probabilities in between 0.2 and 0.8. Thus, it is clear that the values of 
CDF(O), computed in Sala-i-Martin to be over 0.95 for each of these variables, are 
not closely related to the posterior probabilities of inclusion we find here. 

Figure 1 graphically presents the posterior density functions of some key regres- 
sion coefficients. A gauge on top of the graphs indicates (in black) the posterior 
probability of inclusion of the corresponding regressor. The actual posterior distri- 
bution is a mixture of the indicated continuous part and a point mass at zero, with 
the corresponding probabilities. The continuous part is itself a mixture as in (5) over 
the Student-t posteriors for each model. Note that this can lead to asymmetry (as 
in the coefficient of primary school enrollment) or even multimodality (see fraction 
Catholic). A dashed vertical line indicates the averaged point estimate presented 
in Tables 1 of Sala-i-Martin (1997a,b). T wo vertical dotted lines indicate a classical 
90 percent confidence interval” using the averaged estimated standard deviation of 
Sala-i-Martin (1997a,b). In spite of the difference in statistical paradigm,7 Figure 1 

5 Defined as the sum of the posterior probabilities of all models that include this regressor. 

6 Sala-i-Martin’s conclusions in the Normal case are based on whether or not this interval includes 
zero, and his results for the case with a non-Normal distribution of estimates across models are 
approximately based on this. 

7 In particular, we stress that our Bayesian analysis does not identify inclusion of a regressor 
with the scaled distance of the posterior mean from zero, but rather relies on explicit posterior 
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Table 1. Posterior Probabilities of Inclusion for Regressors 
(Reduced set of regressors) 

Regressors Post.Prob. 

=+ 1 GDP level in 1960 1.0000 

2 Fraction Confucian 0.9997 
=+ 3 Life expectancy 0.9975 

4 Equipment investment 0.9425 

5 Sub-Saharan dummy 0.8810 

6 Fraction Muslim 0.8734 

7 Fraction GDP in mining 0.8186 

8 Rule of law 0.7712 

9 Degree of capitalism 

10 Nonequipment investment 

11 Fraction Protestant 

12 S.D. of black market premium 

13 Fraction Buddhist 

14 Number of economy years open 
j 15 Primary school enrollment, 1960 

16 Primary exports, 1970 

17 Civil liberties 

18 Latin American dummy 

19 Fraction Catholic 

20 Political rights 

21 Exchange rate distortions 

22 Spanish Colony dummy 

23 War dummy 

24 Absolute latitude 

25 Revolutions and coups 

Source: Authors’ calculations. 

0.7368 

0.6811 

0.6796 

0.5602 

0.5502 

0.4599 

0.3562 

0.3273 

0.2390 

0.2354 

0.2140 

0.1864 

0.1526 

0.1508 

0.1428 

0.0997 

0.0974 

allows for an informal comparison with the findings of Sala-i-Martin concerning the 
inclusion of these regressors. For some coefficients, the main difference results from 
the location estimate (years open economy, latitude), for others (primary school 
enrollment, war) the spread is the main cause, and for fraction Catholic and rev- 
olutions and coups both location and spread are very different from the classical 
results in Sala-i-Martin. 

In the above analysis, we have restricted ourselves to the 25 variables that were 
labeled as important in Sala-i-Martin (199713). As our methodology-based on a 
much larger set of models-leads to quite different results, we might well question 
this choice of regressors. Thus, in order to tackle the problem more fully and propose 
a constructive alternative, based on our methodology, we now consider a larger set 
of possible regressors. 

model probabilities. Nevertheless, the two often are correlated in practice. 
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Figure 1. Posterior Densities of Selected Coefficients 
(Reduced set of regressors) 
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B. The Full Set of Regressors 

We now add to the set in the previous subsection all regressors that do not entail 
a loss in the number of observations. Thus, we keep n = 72 observations which 
allows us to expand the set of regressors to a total of k = 41 possible variables. 
This implies we have a model space M with 2.2 x 1012 different models, and the 
task becomes daunting indeed. Again, we use a Uniform prior over models, and we 
find that (as expected, given the size of M) we need a larger amount of drawings 
of the MC3 sampler to achieve full convergence. We shall report results from a 
run with 2 million recorded drawings after a burn-in of 1 million, leading to a 
correlation coefficient of visit frequencies and actual posterior probabilities of 0.75. 
Nevertheless, even the results based on 500,000 drawings after a mere 100,000 burn- 
in drawings capture the essence of the posterior mass in M. In particular, the best 
nine models are exactly the same in both runs. Many more runs, started from 
randomly drawn points in model space and leading to virtually identical results, 
confirmed convergence of the sampler. In a representative chain of 2 million draws, 
522,476 models are visited (less than one in every four million models) and the best 
model obtains a posterior probability of 0.21 percent. Again, the mass is extremely 
spread out: the best 73,869 models share the first 90 percent of the posterior model 
probability, making BMA a necessity for meaningful inference. In addition, the 
nine best models all have in between 18 and 22 regressors, raising further doubt 
about the adequacy of the 7-regressor models in Ms. Indeed, the intersection of 
M and MS, denoted by MI, is now allocated a mere 7.1 x lop5 percent posterior 
probability (roughly 20 times the prior mass). 8 Note that MI now contains 73,815 
models. 

Posterior probabilities of including each of the 41 regressors are tabulated in 
Table 2. In addition, the table contains the values of non-Normal, weighted CDF(0) 
that were at the basis of the findings of Sala-i-Martin (1997a,b). An arrow in front 
of a regressor identifies the 22 important regressors of Sala-i-Martin (1997b, Table 1) 
and regressors with double arrow are the ones he always retained in the models. 
Starting with the latter three, it is clear that life expectancy and GDP in 1960 can 
indeed be retained without any problem, but that is much less the case for primary 
school enrollment. For example, higher education enrollment would be a better 
choice from our results. 

The 22 regressors that Sala-i-Martin flags as important have posterior proba- 
bilities of inclusion ranging from 4.8 percent (the lowest of all!) to 100.0 percent. 
The Spearman rank correlation coefficient between CDF(0) and posterior inclusion 
probabilities is only 0.29. Interestingly, many of the regressors get similar posterior 

8 For comparison, the posterior probability of the best 73,815 BMA models multiplies the corre- 
sponding prior probability by about 27 million. 
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Ti %ble 2. Posterior Probabilities of Inclusion for Regressors 
(Full set of regressors) 

BMA Sala-i-Martin 

Regressors Post.Prob. CDF(0) 

=+ 1 GDP level in 1960 1.000 1.000 
4 2 Fraction Confucian 1.000 1.000 
=3 3 Life expectancy 0.999 0.999 
--+ 4 Sub-Saharan dummy 0.996 0.997 
+ 6 Equipment investment 0.970 1.000 

5 Fraction Hindu 0.969 0.654 
7 Size labor force 0.945 0.835 

-+ a Fraction GDP in mining 0.944 0.994 
+ 9 Rule of law 0.928 1.000 

10 Higher education enrollment 0.911 0.579 
11 Ethnolinguistic fractionalization 0.874 0.643 

--+ 12 Latin American dummy 0.752 0.998 
--+ 13 Nonequipment investment 0.714 0.982 
+ 14 Black market premium 0.685 0.825 
=+ 15 Primary school enrollment, 1960 0.625 0.992 
+ 16 Spanish Colony dummy 0.593 0.938 
-+ 17 Degree of capitalism 0.563 0.987 
--+ 18 Civil liberties 0.545 0.997 

19 French Colony dummy 0.544 0.702 
20 British Colony dummy 0.468 0.579 

--+ 21 Fraction Protestant 0.466 0.966 
-+ 22 Fraction Muslim 0.439 1.000 

23 Outward orientation 0.418 0.634 
24 Fraction of pop. speaking English 0.416 0.910 

25 Public education share 0.297 0.580 
--+ 26 Political rights 0.289 0.998 
4 27 Fraction Buddhist 0.254 0.964 

28 Aee 0.243 0.903 
+ 29 War dummy 

--f 30 Exchange rate distortions 

-+ 31 Fraction Catholic 

4 32 Number of years open economy 
33 Population growth 

4 34 Absolute latitude 

-+ 35 Primary exports, 1970 

36 Fraction speaking foreign language 

37 Area (scale effect) 

38 Ratio workers to population 

+ 39 S.D. of black market premium 

40 Fraction Jewish 

--+ 41 Revolutions and coups 

Source: Authors’ calculations. 

0.143 0.984 

0.120 0.968 
0.116 0.963 
0.076 1.000 

0.075 0.807 
0.075 0.980 
0.066 0.990 
0.058 0.831 
0.057 0.532 
0.053 0.766 
0.050 0.993 
0.048 0.747 
0.048 0.995 
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support for inclusion as in the analysis with the reduced set of regressors. In sum- 
mary, our analysis leads to the classification shown in Table 2, where the top 11 
regressors (with posterior probabilities larger than 0.85) could be labeled as impor- 
tant regressors, and the bottom 13 (with posterior probabilities smaller than 0.15) 
are unimportant regressors. 

Thus, it is clear that our methodology does not lead to the same results as found 
in Sala-i-Martin (199713). I n addition, an important difference is that we have a 
coherent framework in which inference can be based on all models, averaged with 
their posterior probabilities. So there is no need for us to choose or discard any of 
the regressors, and the classification above need not be interpreted in that fashion. 
As we shall see in the next section, using BMA rather than choosing one particular 
model is particularly beneficial for prediction. 

Figure 2 displays the posterior distributions .of certain regression coefficients in 
the same format as Figure 1. The first four coefficients graphed in Figure 2 corre- 
spond to four variables-years open economy, primary exports, standard deviation 
of black market premium, and revolutions and coups-that are each included in 
Sala-i-Martin’s analysis (with CDF(0) > 0.990), yet get less than 8 percent poste- 
rior probability of inclusion in our BMA analysis. Averaged posterior modes are 
quite far from the averaged classical point estimates. The next two coefficients are 
illustrative of the opposite situation. The regressors fraction Hindu and higher ed- 
ucation enrollment are excluded in Sala-i-Martin (1997b) with CDF(0) < 0.66, but 
BMA results indicate these are quite important variables with posterior probabil- 
ities of inclusion exceeding 91 percent. Two regressors for which results of both 
analysis are seemingly similar are the dummies for sub-Saharan country and Span- 
ish colony. For the former, BMA inclusion probability and CDF(0) are both very 
close to unity, yet the posterior mode is roughly twice the averaged point estimate. 
For the latter, both analyzes might well agree on the relative importance of the vari- 
able, but the sign and magnitude of the effect of this variable differ dramatically 
between the two methods. Finally, for fraction Confucian and fraction of GDP in 
mining the averaged confidence intervals accord well with the posterior results from 
BMA. 



- 14- 

Figure 2. Posterior Densities of Selected Coefficients 
(Full set of regressors) 

Source: Authors’ calculations. 
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IV. PREDICTIVE RESULTS 

An important quality of a model is that it can provide useful forecasts. In ad- 
dition, such a predictive exercise immediately provides a benchmark for evaluating 
the model’s adequacy. We consider predicting the observable yf given the corre- 
sponding values of the regressors, grouped in a k-dimensional vector .LZ~ (which has 
been transformed in the same way as 2, by subtracting the average of the original 
regressors over the n observations on which posterior inference is based.g 

Prediction naturally fits in the Bayesian paradigm as all parameters can be inte- 
grated out, formally taking parameter uncertainty into account. If we also wish to 
deal with model uncertainty, BMA as in (5) provides us with the formal mechanism, 
and we can characterize the out-of-sample predictive distribution of 3.f by 

where fs(z 1 V, b, a) denotes the p.d.f. of a univariate Student-t distribution with 
v degrees of freedom, location b (the mean if v > 1) and precision a (with variance 
w4--2))P rovided v > 2) evaluated at 2. In addition, xf,j groups the j elements 
of 2.f corresponding to the regressors in iL!lj, & = (Z;Zj)-‘Ziy and 

d; = 1 

soj + 1 
2/1Mxjy + ,o)l’“; l (Y - %L)‘(Y - &J. (10) 

The term in (9) corresponding to the model with only an intercept is obtained by 
letting the corresponding gej tend to infinity. 

We shall now split the sample into n observations on which we base our poste- 
rior inference and q observations which we retain in order to check the predictive 
accuracy of the model. As a formal criterion, we shall use the log predictive score, 
introduced by Good (1952). For f = n + 1, . . . , n + q (i.e., for each country in 
the prediction sample) we base our predictive measure on (9) evaluated in these 
retained observations yn+r, . . . , Y~+~, namely: 

LPS = -i nz lnp(yf I y), (11) 
f=n+l 

’ This is merely to assign the same interpretation to the regression coefficients in posterior and 
predictive analysis. 
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The smaller LPS is, the better the model does in forecasting the prediction sample. 

In particular, we shall compare four different regression models: the BMA model, 
given by (9), the best model (i.e., the one with the highest posterior probability) in 
M, the best model in MI, and the full model with all k regressors. As a benchmark 
for the importance of growth regression, we also include LPS for the “null model,” 
i.e., the model with only the intercept where no individual country characteristics 
are used in predicting the growth of the countries in the prediction sample. 

The partition of the sample into the inference and the prediction sample is done 
randomly, by assigning an observation to the inference sample with probability 0.75. 
The results of three different partitions are presented in Table 3, for the reduced 
set of regressors (k = 25) and the full set of regressors (k = 41). Results cannot 
be compared across partitions, but the comparison between the different regression 
models clearly favors BMA. In particular, BMA dominates the single regression 
models in five out of the six cases examined, often by a large margin. In one case, 
the best model from the set MI does slightly better than BMA. Overall, this is 
very compelling evidence supporting the use of formal model averaging rather than 
the selection of any given model. Finally, from the predictive performance of the 
null model, we deduce that growth regression through BMA typically improves 
predictions dramatically, except for one case. In the first run of the case with 
Ic = 41 the null model proved to be best, undoubtedly as a result of the fact that 
the countries in the estimation sample were not at all representative for those in 
the prediction sample, and our regression inference thus actually led us astray (but, 
still, least of all for BMA). Overall, however, regression models with BMA result in 
a considerable predictive improvement over the null model. 

Table 3. Predictive Performance 
k = 25 k = 41 

Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 

BMA 0.80 0.35 1.67 4.49 0.10 1.94 
Best model in Ml 1.21 2.06 3.42 5.12 0.32 1.54 
Full model 3.11 0.96 2.00 7.57 0.22 4.24 
Best model in M 4.52 3.36 2.84 9.65 2.83 3.94 
Null model 2.69 2.83 2.51 2.24 2.67 2.48 
Q 20 21 20 1 18 23 18 

Source: Authors’ calculations. 
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V. DISCUSSION 

The value of growth regression in cross-country analysis has been illustrated in 
the predictive exercise in the previous section. We agree with Sala-i-Martin (199713) 
that some regressors can be identified as useful explanatory variables for growth in a 
linear regression model, but we advocate a formal treatment of model (and parame- 
ter) uncertainty. In our methodology the importance of an explanatory variable does 
not necessarily imply anything about the size or sign of the regression coefficient 
in a set of models, but is based entirely on the posterior probabilities of models 
containing that regressor. In addition, we go one step further and provide a practical 
and theoretically sound method for inference, both posterior and predictive, using 
BMA. From the huge spread of the posterior mass in model space and the predictive 
advantage of BMA, it is clear that model averaging is recommended when dealing 
with growth regression. 

Our Bayesian paradigm provides us with a formal framework to implement this 
model averaging, and recent MCMC methods are shown to be very powerful indeed. 
Despite the huge model space (with 2.2 trillion models), we obtain reliable results 
without an inordinate amount of computational effort.‘O 

The analysis in Sala-i-Martin (199713) is not Bayesian and thus no formal model 
averaging can occur, even though he considers weighting with the integrated likeli- 
hood.” In addition, the latter analysis evaluates all models and is thus necessarily 
restricted to a rather small set of models, MS, which turns out not to receive much 
empirical support from the data. As a consequence, we find a rather different set 
of variables that can be classified as “important” for growth regressions. An im- 
portant additional advantage is that our results are immediately interpretable in 
terms of model probabilities and all inference can easily be conducted in a purely 
formal fashion by BMA. It is not clear to us what to make of the recommendations 
in Sala-i-Martin (199713): should the applied researcher use all of the regressors 
identified as important or mix over the corresponding models in MS? However, 

lo The chain for the reduced set of regressors takes about 1 hour and 45 minutes on a 240MHz 
PowerPC 603-based laptop (Apple PowerBook 3400~ under MacOS 8.5, with 144Mb of physical 
RAM, 256Mb of total RAM). Each posterior density for the coefficients takes about one additional 
minute to compute. The computation of LPS takes about three seconds for each prediction 
involved. Computation times are cut, at least, in half in a shared Sun SPARCenter 1OOOE under 
SunOS 5.4 with 3.5Gb of RAM. The chains for the full set of 41 regressors were all executed in the 
Sun SPARCenter. The reported chain took about 21 hours of CPU, and each coefficient posterior 
density about five additional minutes. For the 75-25 prediction split, the computation of LPS 
required about 30 seconds for each prediction. Our programs are efficiently coded in Fortran 77 
and are freely available at http:// www.freeyellow.com/members6/mcmcmc/. 

l1 Sala-i-Martin (1997a,b) does not specify what this integrated likelihood is; as there is no prior to 
integrate with, this may refer to the maximized likelihood, which is proportional to (y’Mxj Y)-“/~ 
for Mj. 
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the latter would have to be without proper theoretical foundation or guidance if a 
classical statistical framework is adopted. 

In our view, the treatment of a very large model set, such as M, in a theoretically 
sound and empirically practical fashion requires BMA and MCMC methods. In 
addition, this methodology provides a clear and precise interpretation of the results, 
and immediately leads to posterior and predictive inference. 
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