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Abstract 
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samples the long-horizon procedure gives rise to spurious evidence of predictive power. A 
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The importance to applied economists of having statistical tools that can reliably test 
for the presence of long-run predictability in time-series data can hardly be overstated. One 
such technique has gained prominence because of its apparent success in uncovering long-run 
relationships in international financial data. Recently, Mark (1995), Chinn and Meese (1995), 
and Bauer (1995), applied the long-horizon regression approach to investigate whether 
economic fundamentals have predictive power for exchange rates. 

The regressions employed by Mark and Chinn and Meese contain an error-correction 
term for spot rates and monetary fundamentals. Their analysis thus assumes that spot rates and 
fundamentals cointegrate. This paper uses the bivariate error-correction model that is implied 
by this assumption to show that little may be gained from long-horizon regressions. In 
particular, if the slope coefficient of the one-period-ahead regression is zero, then the slope 
coefficients must be zero for all horizons; on the contrary, if the estimated one-period-ahead 
coefficient is not zero, then estimated coefficients increase as the horizon increases. 

This paper further explores the conjecture that the existing evidence of long-run . 
exchange rate predictability may be an artifact of the statistical technique. It shows that if spot 
exchange rates were independent of economic fundamentals, then long-horizon regressions 
would behave like spurious regressions. As a result, the finding of increasingly strong 
relationships at long horizons may not be evidence of an economic relationship. 

Several simulation experiments are conducted in which two independent time series 
are generated, one modeled after quarterly exchange rates and the other after monetary 
fundamentals as in Mark and Chinn and Meese. The results confirm that several diagnostic 
statistics, such as I-statistics and R2, are increasingly biased away from zero for longer 
horizons of interest. Finally, the paper finds that even the graphical evidence of strong 
predictability over long horizons is misleading. 



The importance to applied economists of having statistical tools which can reliably test 
for the presence of long-run predictability in time series data can hardly be overstated. One 
such technique has gained prominence in recent years because of its apparent success in 
uncovering long-run relationships in international financial data. Recently, Mark (1995), 
Chinn and Meese (1995) and Bauer (1995) applied the long-horizon regression approach to 
investigate whether economic tindamentals have predictive power for exchange rates. Earlier 
applications of this methodology include the study of equity return predictability (e.g., Fama 
and French (1988) and Campbell and Shiller (1988)) and inflation and interest rate 
predictability (e.g., Fama (1990) and Campbell and Shiller (199 1)). 

The regressions employed by Mark (1995) and Chinn and Meese (1995) contain an 
error-correction term for spot rates and monetary fimdamentals. Their analysis thus assumes 
that spot rates and hndamentals cointegrate. We use the bivariate error-correction model 
which is implied by this assumption to show that little may be gained from long-horizon 
regressions. In particular, if the slope coefficient of the one period ahead regression is zero 
then the slope coefficients must be zero for all horizons. 

Furthermore, we explore the conjecture that the existing evidence of long-run 
exchange rate predictability may be an artifact of the statistical technique. We show that 
if spot exchange rates were independent of economic tindamentals, then long-horizon 
regressions behave like spurious regressions. As a result, the finding of increasingly strong 
relationships at long horizons may not be evidence of an economic relationship. 

We conduct several simulation experiments in which we generate two independent 
time series, one modeled after quarterly exchange rates and the other after monetary 
tindamentals as in Mark (1995) and Chinn and, Meese (1995). The results confirm that several 
diagnostic statistics, such as t-statistics and R2, are increasingly biased away from zero for 
longer horizons of interest, casting doubt on the reliability of inference from long-horizon 
regressions. 

The remainder of this paper proceeds as follows. In Section II, we discuss the long- 
horizon regression methodology as commonly applied to monetary models of exchange rate 
dynamics. In Section III, we describe the results of the Monte Carlo experiments. Section IV 
discusses the estimation results of Mark (1995) in the context of our Monte Carlo critical 
values. Section V concludes. 
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II. LONGHORIZON REGRESSIONS 

The long-horizon regression approach entails estimating K individual equations, 

k=l,...,K, 

where s, and z, are observed data, Ak is the k* difference operator and c& and Pk are the 
parameters to be estimated. If the Pk’s, the associated t-statistics and the regression q’s are 
found to increase with k, the researcher takes this as evidence that z, can predict long-run 
changes in s, better than short-run movements. 

In the context of monetary models of exchange rate dynamics, Mark (1995) and 
Chinn and Meese (1995) estimate the following equations: 

(1) 

(2) 

where s, is the log spot rate, f,=(m,-m,‘)- (yl-yt*), m, and yt denote the log of Ml and of real 
GDP, respectively, and asterisks represent foreign quantities. ’ 

This error-correction representation is motivated by the assumption that exchange 
rates cannot move independently of macroeconomic fimdamentals over long time horizons. 
According to specification (2) if D,>O and the error-correction term (c-s,) is, for example, 
positive, the spot rate is expected to raise in the future. Such predictable movements contrast 
with the conventional view that floating exchange rates are best characterized by a driftless 
random walk (among others, Meese and Rogoff (1983), (1988) and Diebold and 
Nason (1990)). In light of this fact, specification (2) can be thought of a test of whether the 
inclusion of monetary fundamentals can beat the random walk forecast. 

A. What Do We Learn from Estimating Long-Horizon Regressions? 

Estimation of the long-horizon regressions (2) implicitly assumes that nominal 
exchange rates and monetary fundamentals cointegrate with cointegrating vector [ 1 -11’. 

‘Bauer (1995) estimates a multivariate regression, where the dependent variable is the 
(multiperiod) ex post excess return from forward speculation and the independent variables 
are an intercept term, the slope of the term-structure of interest rates in the foreign country, 
the dividend yield in the foreign country and the forward premium. 
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This implies, by the Granger representation theorem, the following Vector Error-Correction 
Model (VECM):2 

AsI+, =a&s,)+q , 
A(_, =~2(f&+~2:,. (3) 

Stationarity of the error correction term (ft-s,) requires that at least one of the loading 
coefficients, h, or L, be different from zero and that h2-h,,<O. In general, the error terms o, I 
and o,,, need not be identically and independently distributed. 

Again letting zf(f,-s,), it is easy to show that z,=pz,-, +o, , where p=( 1+&-h,) and 
o,= o2 ,-a,,,. Exploiting the autoregressive structure of the z-process, we can write 

k 
q4 k=PkZt+t,+k? with k,,,=c pL,mjot+j Hence, the k-change in the log spot rate can be rewritten 

j 1 
as: 

Several considerations emerge by comparing the long-horizon regression (2) with 
equation (4) i.e., the implied long-horizon regression from the VECM. 

First, p1=3L1, so that: 

p,=p,%. 

(4) 

(5) 

This implies that if p,=O, then Pk=O for all k> 1. If the hypothesis p,=C, is not rejected, nothing 
seems to be gained by estimating the long-horizon regressions for k>l 

Second, when z, is positively autocorrelated (when p>O), if p, $0, then pL>pl for all 
k>l The increase in the estimated slope parameters of long-horizon regressions when k 
grows large, a fact often observed in practice, is not surprising at all and does not imply that 
fundamentals have a stronger impact on exchange rates at long more than at short horizons. 

‘The drift components are omitted from the VECM for simplicity 
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Instead, the increase in pk’s simply reflects the positive sign attached to the term I-pk and its 
direct dependence on k.3 1 -P 

Lastly, the VECM representation (3) clarifies the nature of the null and alternative 
hypotheses of the testing procedure suggested by Mark (1995) and Chinn and Meese (1995). 
Testing the null hypothesis Pk=O, for all k’s, in equation (2) is equivalent to testing the 
hypothesis that the spot rate is weakly exogenous for the cointegrating vector in the system 
(3), i.e., that 3t,=0.4 This would imply that, although there is a long-run relationship between s, 
and fl, knowledge of the history of the fundamentals will not be helpful in predicting fbture 
values of the spot rate, no matter how long is the prediction horizon.5 

The alternative hypothesis h,+O corresponds to a situation in which the spot rate is not 
weakly exogenous for the cointegrating vector, so that knowledge of the history off, will be 
helpful in formulating forecasts of s,. However, to construct valid multi-step forecasts of s, 
from long-horizon equations, it is necessary that the spot rate does not feedback into the 
equation for the fundamentals in system (3) (i.e., that f, is strongly exogenous).6 
Unfortunately, estimation of the long-horizon regression alone does not reveal anything 
regarding the exogeneity status of the fundamentals. 

To summarize, given that exogeneity off, or s, cannot, in general, be ruled out a 
priori, it seems more appropriate to start a predictability analysis for the spot rate by 
estimating the full joint model (3) within which the cointegration and exogeneity status of the 
variables can be easily checked. To illustrate, we present estimates of h, and h, in 

‘The present discussion deliberately ignores the power of the t-test associated with Pk. Under 
the alternative hypothesis, Pk increases with k, that is, the alternative hypothesis moves away 
from the null. Thus, the probability of rejecting a false null will increase with k, producing the 
impression of higher power of the associated t-test for large k’s, However, a proper power 
comparison requires that the alternative is kept fixed. A priori, it is not clear what the power 
properties of the t-tests on Pk will be after accounting for the difference in the alternative 
hypotheses, In the present context, a power comparison would be further complicated by the 
presence of severe size distortions in the t-tests, a point well documented for large k’s, by the 
simulation experiments of the next section. We are grateful to Hashem Pesaran for these 
insights. 

4For a review of definitions and testing procedures of weak exogeneity in cointegrated 
systems see Ericsson (1992) or Johansen (1992). 

‘This is true only if the spot rate does not possess, under the null, significant short-run 
dynamics, i.e., if o,,, -WN (the innovation is white noise). 

‘See, for example, Ericsson (1992) 
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Columns l-2 of Table 1, using the same data as Mark (1 995).7 The associated Horvath and 
Watson (1995) test statistics for cointegration with a known cointegrating vector of [ 1 -11’ 
are displayed in Column 3. For the sample considered by Mark, we cannot reject the joint 
hypothesis that both h,=O and k2=0 for any of the four exchange rates. Equivalently, the null 
that cointegration fails cannot be rejected for the four leading dollar spot rates. Had we 
assumed cointegration and proceeded to estimate the single error-correction equation for spot 
rates, we would have found fairly large t-statistics (displayed in parentheses) for three out of 
four spot rates. In fact, we would have incorrectly concluded that the h, for the Swiss franc is 
significantly different from zero at the 90 percent confidence level. As shown in Section III, if 
cointegration fails the right-hand-side variable is nonstationary and the correct asymptotic 
critical values are of the unit root type (and hence higher). 

Other authors have had similar difficulty in finding support for the hypothesis that spot 
rates and fundamentals cointegrate (e.g., Gardeazabal and Regulez (1992) and MacDonald 
and Marsh (1995)). Indeed, Mark (1995) and Chinn and Meese (1995) themselves are unable 
to reject the null hypothesis that z, is nonstationary for any of four exchange rates considered. 
In the remainder of this comment, we therefore focus on the null hypothesis that the two 
series are statistically unrelated (i.e., cointegration does not hold). 

B. Econometric Problems Associated with Long-Horizon Regressions 

In this section, we discuss the difficulties that may arise when making inference from 
long-horizon regressions, especially in presence of small samples and large k’s The discussion 
is organized around three main points. 

First, the regressor in equation (2), z,, is highly positively autocorrelated and is not 
orthogonal to all leads and lags of the residual, E,,,. As such, the least squares (LS) estimate of 
the slope parameter, bk, is consistent but biased away from zero in small samples8 Even a . 
small bias in p, may, in turn, lead to a severe bias in the associated t-ratio. This amplification 
occurs because both the accuracy of the numerator and the denominator of the t-ratio depend 
on the precision of the estimate of Pk. The empirical distribution of the t-statistics will be 
shifted away from zero and skewed, regardless of the horizon considered. Indeed, when the 
regressor is,highly persistent, the distribution of the t-statistics would be better approximated 
by the distribution of the Dickey-Fuller t-test, than by the usual asymptotic Gaussian 
counterpart (see Stambaugh (1986)). The correct small-sample critical values for a t-test of Pk 

‘The data were kindly provided to us by Nelson Mark. For a description of the sources see 
Section IV. 

‘See Mankiw and Shapiro (1986), Stambaugh (1986) and Nelson and Kim (1993). The bias is 
an increasing function of the degree of autocorrelation of the regressor and of the size of the 
covariance between the innovation of the regressor and the error term of the estimated 
equation. 
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Table 1. Estimates of Vector Error-Correction Model 

A2 Wald (HW) 

Canadian Dollar 0.033 
(1.54) 

German Mark 0.033 
(0.90) 

Japanese Yen 0.063 
(1.57) 

Swiss Franc 0.073 
(1.85) 

-0.015 4.594 
(-1.23) 

0.003 0.879 
(0.3 1) 

-0.004 2.745 
(-0.45) 

-0.013 6.491 
(-1.62) 

Notes: The table presents estimated slope coefficients, A, and AZ, of the vector 
error-correction system (3) with t-statistics in parentheses. For each regression, the 
number of lagged dependent variables is selected by the BIC. Wald(HW) refers to the 
Horvath and Watson (1995) test statistic for cointegration with a known cointegrating 
vector. For the bivariate system under consideration, the 90 percent critical value is 
6.63 and 95 percent critical value is 8.47. 
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in the long-horizon regression (2) will, in general, be very different (typically, higher) from the 
asymptotic ones. 

Second, a careful examination of equation (4) the implied long-horizon regression 
from the VECM, reveals the presence of a moving average process of order k-l in the error 
term, as always in regressions with overlapping observations. Thus, the least squares standard 
errors will be inconsistent. 

Third, and most important, if there is no statistical relationship between s, and f,, the 
long-horizon regressions become ‘close’ to a classical spurious regression as k increases. To 
see this, note that if the exchange rate is well approximated by a random walk, then we may 

write sl=c qi, where rli-wN(O,a,“), so that equation (2) becomes: 
i=l 

t+k 

c Tli=CLk+Pk(fl-Sl)+Ek,t’ 
izt+l 

k=l,..,K. (6) 

For large k the dependent variable is itself approximately a random walk. Since the right-hand- 
side variable is highly persistent, one might reasonably expect to find that this regression 
behaves like a true spurious regression.g These observations cast doubt upon the reliability of 
inference from the long-horizon regression methodology. 

The usual asymptotic inference associated with long-horizon regressions is thus likely 
to be misleading, especially with small samples and large k’s, The main problems are the 
presence of a very persistent stochastic regressor, autocorrelation in the residuals and high 
persistence of the left-hand-side variable (for k large). 

Mark (1995) Chinn and Meese (1995) and Bauer (1995) following an established 
practice in the stock-return predictability literature (see, for example, Hodrick (1992)) 
attempt to correct for these problems by generating bootstrap (Monte Carlo) critical values 
for the diagnostic statistics associated with regression (2). For example, in Mark (1995) 
pseudo-data are generated by fitting a restricted vector autoregression for the change in the 
exchange rate and the error-correction term, (As, z~). Mark thus conditions on the stationarity 
of z,. In Section III, we conduct a Monte Carlo experiment where s, and f, are not 
cointegrated so that z, is nonstationary. In practice, this difference in the stationarity status of 
z, results in very different empirical critical values. Mark’s bootstrapped empirical 

‘Phillips (1986) shows that, for a true spurious regression, conventional t-statistics diverge as 
the sample size grows (there are no asymptotically correct critical values). The slope 
parameter of a bivariate spurious regression is shown to possess a degenerate limiting 
distribution, while the estimate of the intercept diverges, The R2 converges to a random 
variable. 
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distributions will produce critical values which are ‘too small,’ and he will err on the side of 
significance (see Section 4).” Even if z, were stationary, Mark’s bootstrap is likely to be very 
unreliable without suitably bias-correcting the initial slope coefficients on the lags of z,, given 
the presence of persistent stochastic regressors (see, e.g., Kilian (1995)). 

III. SIMULATION EXPERIMENT 

The existing empirical evidence, discussed in Section II, is not supportive of the 
hypothesis of cointegration between exchange rates and fundamentals. Therefore, we 
emphasize that the appropriate null hypothesis associated with estimation of equation (2) is 
the independence of the two time series. Our simulation experiment investigates the small 
sample distribution of conventional diagnostic statistics associated with long-horizon 
regressions, when the two series are statistically unrelated (i.e., cointegration does not hold). 

We generate independent Gaussian random variables, s, and f,, with the relative 
variances of the innovations of the two processes calibrated to quarterly U.S. and German 
data. The exchange rate is modeled as a random walk and the hndamental as an AR(2) with 
persistence parameters, 1.25 and -0.305.” This choice for the fundamental was made by 
fitting ARMA models to the actual U.S.-German data for the period from 1973:2 to 1991:4, 
with the BIC selecting the lag orders, We generate 2000 Monte Carlo iterations. For each 
Monte Carlo dataset, the long-horizon regressions (equation 2) are run and the associated 
diagnostic statistics are computed for k=l, 4, 8, 12 and 16. The results are presented in 
Table 2, panel A. Column 3 displays the median, 90th percentile and 95th percentile of the 
estimated slope coefficients across Monte Carlo trials for each horizon of interest. Despite the 
independence of the series, the median p, rises with k to a maximum of 0.760 for k=16. The 
associated naive LS t-statistics displayed in column 4 also increase with the horizon. Columns 
5 and 6 display t-statistics corrected for autocorrelation with a truncation lag of 20 and with 
Andrews’ (1991) rule (labeled t(20) and t(A), respectively). Again, as the horizon increases 
so do median values of the slope coefftcient’s t-statistics. The right-shift of the empirical 
distribution of the t-statistics inflates the empirical critical values. For example, when k=l6 
the one-sided empirical 95th percentile for t(A) is 9.06 instead of 1.64, i.e., the corresponding 
asymptotic critical value from a Gaussian distribution. 

“Mark (1995) reports that his empirical critical values are not sensitive to the size of the 
largest autoregressive root estimated for the z-process. However, Stambaugh (1986), Mankiw 
and S hapiro (1986) and Hodrick (1992) find such sensitivity in their Monte Carlo 
experiments. 

“In a second experiment, we generated both Monte Carlo series as random walks. The results 
were nearly identical. 



- 12 - 

Table 2. Long-Horizon Monte Carlo Estimates: Random Walks 
and Independent AR(2) 

k Percentile I$ Kw t(20) t(A) G OUT/RW DM/(20) DM(A) 

Panel A: Sample Size = 1076 

1 50 0.056 1.521 2.226 1.604 0.032 1.023 -I ,063 -0.850 
90 0.144 2.570 4.209 2.810 0.086 0.987 0.843 0.548 
95 0.175 2.925 5.084 3.290 0.109 0.972 1.802 1.023 

4 50 0.222 3.090 2.626 2.003 0.125 1.096 -1.133 -0.981 
90 0.505 5.434 5.484 4.654 0.306 0.938 1.175 0.881 
95 0.610 6.171 6.864 5.584 0.363 0.890 2.312 1.590 

8 50 0.428 4.572 3.187 3.038 0.250 1.179 -1.186 -1.078 
90 0.850 8.011 7.024 6.429 0.505 0.868 1.530 1.188 
95 0.960 9.084 8.453 7.641 0.567 0.786 2.712 2.023 

12 50 0.614 5.520 3.702 3.697 0.341 1.215 -1.240 -1.114 
90 1.075 9.943 8.497 8.109 0.626 0.818 1.83 1 1.423 
95 1.216 11.48 10.68 9.524 0.691 0.724 2.798 2.006 

16 50 0.760 6.352 4.110 4.106 0.424 1.205 -1.299 -1.100 
90 1.270 11.75 9.522 9.059 0.715 0.746 2.387 1.862 
95 1.380 13.58 12.28 10.74 0.770 0.664 3.546 2.427 

Panel B: Sample Size = 1076 

1 50 0.004 1.509 1.564 1.515 0.002 1.002 -0.974 -0.979 
90 0.010 2.446 2.532 2.472 0.006 0.999 0.598 0.536 
95 0.012 2.728 2.942 2.775 0.007 0.998 0 984 0.893 

4 50 0.016 3.055 1.617 1.622 0.009 1.007 -0.989 -0.985 
90 0.038 4.891 2.696 2.719 0.022 0.997 0.602 0.602 
95 0.048 5.473 3.080 3.131 0.027 0.993 1.077 1.077 

8 50 0.032 4.374 1.698 1.705 0.018 1.015 -1.012 -0.97 1 
90 0.076 6.989 2.830 2.859 0.044 0.993 0.598 0.609 
95 0.092 7.768 3.211 3.328 0.054 0.986 1.117 1.162 

12 50 0.048 5.274 1,802 1.768 0.026 1.022 -I ,047 -0.967 
90 0.113 8.61 I 2.970 3.003 0.065 0.989 0.609 0.624 
95 0.136 9.585 3.375 3.444 0.080 0.979 I.\\5 I.218 

I6 50 0.064 6.123 1.900 1.791 0.034 I .030 -1.066 -0.952 
90 0.150 10.01 3.1 16 3.100 0 087 0.987 0.613 0.614 
95 0.187 11.18 3.582 3.686 0 106 0.972 1.141 1.218 

Notes: The table presents estimated slope coefficients, B k , for equation (2) with the LS t-statistics. heteroskedasticity and 
autocorrelation-corrected t-statistics using a Bartlett kernel and a truncation lag of 20 and Andrews’ (1991) rule, respectively, 
t&S), t(20) and l(A). OUTRW denotes the ratio of regression mean-squared out-of-sample forecast error to the random walk 
mean-squared out-of-sample forecast error DM(20) and DM(A) denote the Diebold-Mariano statistrcs with a Bartlett kernel and 
truncation lags of 20 and truncation via Andrews’ (1991) rule, respectively. 
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Column 8 of Table 2, panel A, displays the ratio of root-mean-squared error for out- 
of-sample regression forecasts over root-mean-squared error implied by the random walk 
model. Thus, for values below 1 the regression appears to deliver more accurate forecasts 
than the benchmark random walk.‘* As k increases, the finite sample distribution of this 
statistic becomes more fat-tailed. This is due in good measure to the fact that as k increases, 
the number of forecast observations decreases. As a result, empirical critical values decrease 
dramatically with k. 

Colurnns 9- 10 display the Monte Carlo Diebold and Mariano (1995) statistics, again 
with either a truncation lag of 20 or using Andrews’ (1991) rule (labeled DM(20) and DM(A), 
respectively).” For both truncation rules, the median values of the Diebold-Mariano statistics 
are negative, implying that the random walk forecast beats the regression. Again, the empirical 
distribution of the DM statistics are fat-tailed for large k. The 95th percentile of the DM(A) 
increases from 1.02 for k=l to 2.23 for k=16. 

These findings result from the combination of problems which arise with long-horizon 
regressions, when the two series fail to cointegrate. For example, although we argue that 
explanatory power appears to increase with k (e.g., high median R$ and high empirical 
critical values of the t-statistics), there are sizeable distortions even for k=l These biases arise 
because of the presence of stochastic and highly persistent regressors. To further complicate 
matters, the distribution of the estimated slope coefficient would be different if the regression 
were estimated without a constant term (as in Dickey and Fuller (I 979)). However, we report 
only the results which are relevant for the regressions in Mark (1995) Chinn and Meese 
(1995) and Bauer (1995) where constants are always estimated. 

Such stark results obtain in sample sizes typical of available data. For any fixed and 
finite k, a long-horizon regression will deliver consistent estimates as the sample size tends to 
infinity.‘4 In panel B of Table 2, we report the results of an identical simulation experiment 
with a sample size of 1076. Now, the median p,‘s are all lower, but the bias is still sizable for 
large k; for example, the median of p, is 0.064 for k=16. @ are low and the ratios of RMSE 
of regression to random walk forecasts are very close to 1 for all horizons. However, the 

‘*At each Monte Carlo trial, the out-of-sample forecasting exercise precisely mimics the 
procedure in Mark (1995). For a sample size of 76, this results in 40 l-step ahead forecasts 
and 25 16-step ahead forecasts. 

13Notice that the values (and empirical critical values) of our Diebold-Mariano statistics are 
different from Mark’s The difference is due to an unconventional procedure adopted by Mark 
for estimating the autocovariances (see footnote 8 of Mark (1995)). 

14However, Richardson and Stock (1989) show that LS estimates of the slope of regressions 
(2) are inconsistent when the forecast horizon grows with the sample size (so that k/T-G, a 
constant). 
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presence of small bias in the LS slope parameters introduces large distortions at all horizons 
in the empirical critical values of the t-statistics. These distortions do not seem to vanish 
quickly with the increase in the sample size. 

It is important that finite sample inference from long-horizon regressions be assessed 
by means of empirical distributions of the statistics of interest simulated under the null of no 
statistical relationship between the series. If standard Gaussian asymptotic theory is adopted, 
spurious evidence of predictability arises at practically all horizons and regardless of the length 
of the sample considered. *.. 

Lastly, we suggest that even the graphical evidence of predictability presented by 
Mark (1995) --and reproduced in Figure l-- may be spurious. In Figure 2, the actual k-period 
changes in the log dollar/German mark rate is plotted against a regression forecast with 
simulated fundamental data. As with the actual fundamentals, these plots appear to suggest 
predictive accuracy for longer horizons. Since in Figure 2 the exchange rate is obviously 
independent of the randomly generated fundamental, we conclude that even the graphical 
evidence from long-horizon regressions is misleading. 

IV. LONGRUN EXCHANGE RATE PREDICTABILITY: MARK’s (1995) 
RESULTS REVISITED 

The Monte Carlo critical values generated under the hypothesis of statistical 
independence between exchange rates and tindamentals need not be the same as the ones 
constructed when cointegration between these series is imposed in the design of the 
simulation, as in Mark (1995). The assessment of the significance of fundamentals in long- 
horizon regression clearly depends on the critical values adopted. Because of this, in the 
present section we reconsider Mark’s (1995) estimation results of equation (2) with bias- 
corrections and significance levels calculated from Monte Carlo distributions simulated under 
the hypothesis of statistical independence between exchange rates and fundamentals, as in the 
Monte Carlo experiment of Section III. The sample includes Canada, Germany, Japan and 
Switzerland. The data are quarterly observations collected from the A4ain Economic 
Indicators of the OECD, from 1973 :2 to 199 1:4. 

Table 3 displays our estimation results. The estimated slope coefficients, t-statistics 
and Rl are identical to those in Table 2 of Mark (1995). Column 3 displays our bias-adjusted 
slope estimates. The bias is estimated by our Monte Carlo median. The bias-corrections result 
in severe reductions in point estimates towards zero. Column 5, labeled p-val, displays the 
one-sided marginal significance levels associated with the empirical distributions of t(A) from 
our Monte Carlo. 

Mark (1995) employing his 95 percent empirical critical values for a one-sided 
alternative hypothesis (i.e., @O), finds significant slope coefficients at long horizons; namely, 
for the German mark and the Swiss franc, in the 12 and 16 quarter horizon regressions 



Figure 1. Changes in the Log U.S. Dollar/German Mark Exchange Rate and 
Monetary Fundamentals. 
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Notes to Figure: For each horizon of interest, k=l, 4, 8, 12 and 16, actual k-period 
changes in the log dollar/mark are depicted as dashed lines. Solid lines indicate 
predicted k-period changes from long-horizon regressions on a monetary tindamental. 
Quarterly data from 1973 :2 to 199 I:4 were obtained from the Main Economic 
Indicators of the OECD. 
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Figure 2. Changes in the Log U.S. Dollar/German Mark Exchange Rate and 
Simulated Fundamentals. 
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Notes to Figure: For each horizon of interest, k=l , 4, 8, 12 and 16, actual k-period 
changes in the log dollar/mark are depicted as dashed lines. Solid lines indicate 
predicted k-period changes from long-horizon regressions on an independent simulated 
AR(2) process. 
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Table 3. Long-Horizon Regression LS Estimates 

K hc D, -adj t(A) p-val g @-adj 

Canadian Dollar 1 0.040 0.020 2.172 0.135 0.059 0.046 
4 0.155 0.076 2.168 0.289 0.179 0.126 
8 0.349 0.206 2.520 0.3 14 0.351 0.247 

12 0.438 0.216 1.936 0.475 0.336 0.191 
16 0.450 0.352 1.514 0.577 0.254 0.064 

German Mark 1 0.035 -0.021 0.929 0.645 0.015 o.ooo* 
4 0.205 -0.016 2.290 0.555 0.104 o.ooo* 
8 0.554 0.120 3.558 0.436 0.265 0.015 

12 0.966 0.348 6.510 0.393 0.527 0.186 
16 1.324 0.576 9.156 0.389 0.762 0.338 

Japanese Yen 1 0.047 -0.008 1.285 0.63 1 0.020 o.ooo* 
4 0.263 0.048 2.055 0.536 0.125 0.004 
8 0.575 0.168 3.385 0.414 0.301 0.064 

12 0.945 0.348 4.427 0.354 0.532 0.201 
16 1.273 0.560 4.934 0.375 0.694 0.286 

Swiss Franc 1 0.074 0.03 1 2.073 0.235 0.051 0.026 
4 0.285 0.120 3.196 0.209 0.180 0.083 
8 0.568 0.256 4.694 0.174 0.336 0.153 

12 0.837 0.396 8.178 0.070 0.538 0.274 
16 1.086 0.544 12.19 0.030 0.771 0.445 

Notes: The data are from the OECD Main Economic Indicators, 1973:2-1991:4. ft, 
are estimated slope coefficients for equation (2). &-adj and e-adj are Monte Carlo 
bias-adjusted estimates. * denotes an e that would be negative if bias-adjusted. 
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(see Table 2 of Mark (1995)). In contrast, using our empirical critical values, we do not find 
any significant slope coefficients even at the 90 percent confidence level for three out of four 
exchange rates. Only for the Swiss franc at k=12 and k=16, do the Andrews corrected 
t-statistics exceed the 90 percent critical values for a one-sided test. (See Table 3.) 

Lastly, although our bias-adjusted Ri’s increase with the horizon for three of four 
currencies, (see Column 7 of Table 3) these values are much lower than those reported in 
Mark (1995). 

It is clear from the above analysis, that some of the encouraging findings of Mark 
(1995) vanish when bias-corrections and empirical critical values are computed under the 
more stringent hypothesis of noncointegration between fundamentals and exchange rates. 

V. CONCLUSION 

Economists have long conjectured that economic fundamentals are important 
determinants of nominal exchange rates. Unfortunately, empirical evidence has so far proven 
elusive. We believe that the available evidence on this matter is not conclusive and welcome 
the contribution to the literature of Mark (1995) Chinn and Meese (1995) and Bauer (1995). 
However, we do not agree that the long-horizon regressions estimated, for example, by Mark 
suggest that there are “systematic exchange rate movements that are determined by economic 
fundamentals.” (Mark (1995) p. 2 15 .) 

Our skepticism is motivated by several considerations: first, by ignoring the 
pronounced absence of evidence of any short-horizon relationships between fundamentals 
and exchange rates and focusing on the long-horizons, Mark and other authors challenge the 
intuitive result that the long-horizon coefficients on error-correction terms are inherently 
linked to their short-horizon counterparts. We show that if the slope coefficient from a one- 
period regression is zero, the coefficients of the long-horizon regressions will also be zero, 
regardless of the length of the horizon. In this sense, nothing seems to be gained by running 
a sequence of long-horizon regressions. We also show that if the estimated one-step ahead 
coefficient is nonzero, then estimated coefficients increase as the horizon increases. This 
implies that the empirical finding of increasing coefficients cannot be taken as evidence of a 
stronger impact of fundamentals on exchange rates. 

Second, by imposing, a priori, cointegration between spot rates and the monetary 
fundamentals and deriving empirical critical values under this assumption, Mark’s (1995) 
interpretation of the evidence of the presence of a statistical relationship between 
fundamentals and exchange rates errs on the side of significance. We demonstrate that 
Monte Carlo critical values tabulated under the null hypothesis that cointegration does not 
hold are much higher than Mark’s (1995). 
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In addition, we show that even the graphical evidence of strong predictability over 
long-horizons may not be reliable. We produce graphs very similar to those in Mark (1995) 
with simulated fundamentals which are generated independently of exchange rates. 

Lastly, a careful examination of Mark’s (1995) recursive out-of-sample forecasts 
from the long-horizon regressions indicate very little evidence of predictability at long 
horizons (Table 4 in Mark (1995)). Mark uses the Diebold and Mariano (1995) statistic to 
compare the performance of the out-of-sample forecasts from the long-horizon regressions 
with the random walk forecast. In only one case (the German mark with k=16) can Mark 
reject the hypothesis that his estimated model produces forecasts no ,better than the 
random walk (we refer to the Diebold-Mariano with the bandwidth selected by the 
Andrews (199 1) rule). 
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