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Within a unified theory for stocks and corporate bonds, based on dynamic optimization by 
investors, this paper derives analytical expressions for the momentary distributions of 
expected price, respectively known to approximate lognormal with systematic deviations 
(high peak, fat tail) and double exponential (for credit risk). Market equilibrium is regarded 
as a dynamic equilibrium characterized by a time-invariant probability distribution over 
microfinancial states, marginal redistributions of portfolios are regarded as indistinguishable, 
and real and fiat assets are regarded as essentially distinct. The formalism provides a basis 
for decomposing value changes by market fundamentals, investor sentiment, and investor 
acquisition of securities. 
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1. INTROINJCTI~N 

Almost always, it seems, capital assets occur as one of two kinds: either real or fiat. 
Real assets are characterized by a limited rate of increase (possibly zero or negative) in amounts 
outstanding, whereas fiat assets have a potentially unlimited rate of increase. Real assets (e.g. 
physical assets) are subject to varying marginal product, whereas fiat assets (e.g. a contract with 
an obligor) are subject to constant marginal product (assuming that investor creditworthiness 
ceilings restrict the aggregate obligations). In some sense, therefore, real assets underlying a 
financial asset do not occupy identical states within a financial system, whereas fiat assets do. - 

We shall crystallize these considerations in the form of an axiom of allowed residency 
of identical states, namely, for real assets, single residency at most, and for fiat assets, unlimited 
residency. For the sake of making a concrete application, we shall consider stocks as an exemplar 
of a financial asset supported by real assets, and corporate bonds of one supported by fiat assets; a 
unified theory for the two will be developed on the basis of optimizing behaviour in frictionless 
markets. 

The financial system that we shall consider consists of a set of assets of fixed types, 
comprising a stock market and a bond market (including a money market deposit), in equilibrium 
with other asset markets. In order to abstract from issues of term structure, however, bonds are 
considered to be of indefinite maturity and subject only to credit risk. Investors (the treatment 
of whom will be largely implicit) optimally manage their portfolios through time, exercising 
short-run rational expectations such that prices evolve deterministically. However, because 
portfolio cashflows are discontinuous (for instance, discrete dividend or interest payments), they 
trade in finite (as distinct from marginal) quantities at discrete points in time. Thus, the optimal 
path through microfinancial state space-the asset holdings by investor-xperiences discrete 
jumps. For that reason, we choose to regard a macrofinancial description of the system-a 
macrofinancial state-to be a probability distribution over all the microfinancial states; and 
macrofinancial equilibrium to be a probability distribution at a point in time that is time invariant 
(with respect to endogenous variables). 

Within this probabilistic framework, definite answers can be established if we assume that 
the number of individual assets, assumed indivisible, is very large. It is this assumption which 
replaces that of infinitely divisible time and continuous finite trading in models that postulate a 
price process. In this paper, the random distribution is not postulated, but derived. Further, the 
random distribution refers to not a process over time, but rather a distribution at a point in time. 
Even in the absence of exogenous uncertainty, equilibrium is a dynamic equilibrium, characterized 
by a determinate distribution (effectively, risk neutral) of expected prices around a mean. 

Determining the dynamic equilibrium for stocks and bonds (Section 2 and Appendix) 
requires some notion of what constitutes distinct microfinancial states of the system. To that 
end, we adopt an axiom of indistinguishability, meaning an inability to distinguish marginal 
redistributions of portfolio assets through trade. Underlying this notion is the observation that 
financial markets display a determinate-price equilibrium in which optimal portfolio composition 



-4- 

is indeterminate (when prices evolve deterministically). Indistinguishability combined with 
allowed residency determines the enumeration of states and the assignment of a probability 
measure. Accordingly, one can calculate (Section 3) the equilibrium probability distributions and 
macrofinancial quantities, that is, probability averaged financial quantities and their distributions. 

The effect of risk on probability distribution averaging (Section 4) is introduced through 
a set of exogenous risk parameters, fixed in number, whose value affects the value of the stocks 
or bonds. The parameters undergo fluctuations, assumed to be small. Additionally, investors 
may make random reallocations of cash between the stock and bond markets and other markets. 
Even though almost nothing is specified about the risk parameters, the resulting distributions are 
determinate and depend critically on the dimensionality of risk, that is, the number of parameters. 
This number is regarded as a quantity to be determined empirically. 

Empirical findings (for instance, Jackwerth and Rubinstein (1996) and Kim (1999)) 
show that the distribution of stock prices is approximately lognormal, with systematic deviations 
such as left skewness and leptokurtosis; and that the distribution of corporate bond prices is 
approximately double exponential, interpreting short-run changes in credit quality as a realization 
of the distribution. Prima facie, the analytical expressions that we derive for the equilibrium 
probability distributions offer the promise of an excellent fit to the empirical data. 

II. DYNAMIC EQUILIBRIUM FOR STOCKS AND BONDS WITH No RISK 

Let there be given a financial system 5, consisting of a set of assets chosen through time t 
by a given set of investors, denoted by index ,LL (p = 1, . . . , M), so as to optimize consumption 
c(t) s CE (cl,... , c”) . 3 is implicitly part of an economy ~2 in which firms issue and redeem 
liabilities that are the counterparts to the assets. 

Assets are either of two kinds, stocks and bonds, denoted by respective indices S and B; 
we shall develop the theory in parallel for both S and B, differentiating the two only as needed. (It 
seems that a similar approach as for the aggregate market could be applied to an individual firm’s 
stocks or bonds, with similar results.) Assets are of K types, denoted by index K (6 = 1, . . . , K), 
each corresponding to a liability of a particular firm; excepting that K = 1 denotes the money 
market deposit (potentially, the liability of any and all firms), which is a capital-certain asset 
paying a nominal rate of interest p. Assets TV = 1, . . . , KB are bonds, and IE = KB + 1, . . . , K 
are stocks (KB < K). d, denotes the current return on asset K (the dividend or coupon rate, with 
dl = p). All assets are denominated in currency units h > 0, assumed to be indivisible. Asset 
holdings by type and investor are specified by quantity n E (n) G (nil, . . . , nKM) E {nKp}, 
of nominal value nh, and by corresponding marginal market price p E {pIEcL}; pl, = 1, the 
numeraire, and P-~, denotes the price of cr”. U = {n}, the set of all possible (n), is called the 
state space; 23 = {p, n}, the phase space; and ?2D = { > t, n, i , i E dn/dt, we shall call the 
configuration space. Each consumer’s unit portfolio, (lp) c (I”-‘, . . . , lKp), is assumed to 
constitute a linearly independent basis set. The formalism admits the possibility of a local market 
structure in 3, across which p,, may differ for fixed PC (f 1). 
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Implicitly in & , profit maximizing firms produce and invest in such a way as to follow 
their optimal path of investment, and p is determined endogenously by the equating of aggregate 
savings and investment. Accordingly, firms’ net cashflow on securities D-issuance less servicing 
of liabilities: 

D = c c p,, drP/dt - d,, nuP 
Kd P 

-is determined as to size (by the aggregate budget constraint of either firms or investors), though 
not as to composition, since we shall maintain the assumption that firms are indifferent as to _ 
the composition of these cashflows (meaning, for instance, Modigliani-Miller indifference to 
debt/equity ratios). The nK = C, r-P will vary, since firms may create or redeem liabilities at 
will (subject to an investor creditworthiness ceiling). 

Remark 1 One could arbitrarily assign a path to either component of D and thereby fix the 
other: for instance, by assuming n fied, dn/dt = 0 (zero net securities issuance); or the polar 
opposite d, E d+ = 0 (say zero dividends and no bonds outstanding). But such an assignment 
would necessarily a$ect the price process p (t) in an incalculable mannec since it would imply 
a counterpart assignment of total return p between capital gains and current returns. Any such 
assignment is a matter of indi$erence in what follows, which concerns only total returns. 

Asset markets are assumed to be frictionless (apart from the indivisibility of assets) with, 
in particular, no transaction costs, no restrictions on short-selling, and no taxes. Investors are 
assumed to be price takers, and markets are assumed to clear. Investors maximize the present 
value of utility flows (with heterogeneous rates of time preference) through the exercise of 
short-run rational expectations alone. The system is nonetheless determinate, because we regard 
not only initial quantities n (tA), but also initial prices p (tA), as given empirical parameters. 

Hence, asset prices evolve deterministically and there is no risk, in the sense that there 
is no short-run nominal uncertainty. The total rate of return p, comprising both income and 
capital gains, is assumed to be a function on the joint phase spaces {qe , Ic}, the real economy 
shadow-price and capital stock, and {p-l, c}, without explicit dependence on time: 

P = PkIe,kP-l,4; 
+/at = 0, 

expressing the presumption that with a given static technology, the value of optimal investment 
is determined by (ae, k) (for given p-i). Total rate of return is equalized across all assets, both 
financial and real; thus, p may be regarded as a risk-neutral return in that all returns are risk free 
(and the issue of completeness of securities markets does not arise). 

Nevertheless, these conditions only hold almost always, because dividend and coupon 
payments are allowed to take discrete finite values; “almost always” means at almost all points, 
excepting at most a set of measure zero, on the optimal time path O& (in general, not unique) in 
U . At points of discrete cashflow, asset market equilibrium cannot be accomplished by marginal 
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trades, thereby necessitating finite trades. As a consequence of optimal investor behaviour, 
therefore, trading is marginal almost always, and finite only at discrete points. (These points 
constitute a set of measure zero; recall from set theory, however, that their number may be 
denumerably infinite, or even non-denumerably infinite.) 

W ith optimal portfolio choice, the present value of portfolio returns (the momentary rate 
of return) including capital gains is given by 

a.e., - 

where “a.e.” denotes “almost everywhere”, synonymous with “almost always”. Here, the ” 
denotes a double transformation of coordinates, from current to present value prices, and from 
current to total return (but we write Y” in terms of observable (pKP, n&p)). 

The derivation of this expression is given in the Appendix. There, the point is made that the 
inclusion of capital gains so as to pass from current to total return can be justified on the basis of a 
time-dependent transformation of coordinates ( > n, n in .!D; and such time-dependent coordinate 
transformations are necessarily allowable if one makes the assumption of the invariance (scalar 
nature with respect to its arguments) of the Lagrangian of the portfolio choice problem: 

L = L t, n, i ( > 

where investors act as if to maximize Jlf L dt, the present value of net cashfiows (that is, act as if 
discounting at the common observable rate p). 

Because dp/at = 0, Y/’ represents a constant of the dynamical evolution of 22? 
(equivalently XI), 

dY,’ 
-=0 a.e.onOza dt 

(as shown in the Appendix), and in general the only determinate constant. Consequently, a 
probability density over !I?, 

Q d27 E IP (p, n) dpll . . . dpKMdn” . . . dnKM, 

must take the form 

X42 d?U =Q (E;“) d!U, 

without explicit dependence of 9 on (t, p, n) (equivalently, ( > t, n, h ), if it is to represent 
macrofinancial equilibrium. XJ! (Y”) = 9 (Y” [p, n]) then equals the (relative) probability of 
occurrence of the microfinancial state (p, n) at time t. We now proceed to construct such a 



-7- 

macrofinancial equilibrium state !V. 

Elsewhere (Johannes, 2001), I have shown on the basis of essentially the same assumptions 
as will be made here, that a heuristic argument concerning the most probable distribution leads to 
a*oftheform 

s 
co 

QdtU=a 1 
+b J dP 

exp [v*] - 1 (a, b constant) o exp [v* + Y/cu*] - 1 

for bonds and zero-return money. The first term refers to zero-return money and will not concern 
us further here. The second term (which we shall derive here by a different route) refers to bonds: 
Y - yt = p* hP denotes the current value Y = exp (+ Jt p dT) Y” of an individual financial 
asset, and P denotes its price; a * denotes the larger systems (market, economy) of which 3 and 
& form a small component; a* is the Lagrangian multiplier associated with Y* (and is also a 
measure of expected nominal output in c ); and u* is the Lagrangian multiplier associated with 
expected volume of financial assets in @ (equivalently, volume of financial assets in e*). In this 
paper, using methods largely known from the mathematical and scientific literature, we shall 
derive the corresponding result for stocks and bonds, starting out with a brief heuristic argument 
and then proceeding to a rigorous treatment of the case of N assets. 

Consider two composite assets 1 and 2 that are part of 3, each consisting of all the 
liabilities of one kind (S or B) of respective firms 1 and 2, and with corresponding Yl and Ys. The 
subscript t on Y is henceforth omitted, since we shall be concerned exclusively with momentary 
equilibrium at a point in time. Assume that these distinguishable assets form a small part of 8, 
such that Yi, Ys < Y for 5 in aggregate. In the idealized limit of many firms (identical in type 
though not in size) in which Yi/Y, Ys/Y + 0, we would expect the probability densities for the 
two components, Xl? (Yi) and 9 (Yz) to be statistically independent; note that this expectation 
asserts nothing about the assets’ returns, only something about the probability of occurrence of 
assets bearing Yi and Ys. Statistical independence implies that Q satisfies the functional equation 

Let us assume that Q is continuous. Then we can apply the mathematical theorem that the only 
solutions of this equation for functions continuous on the real line are the exponential functions: 

XP (Y) = c exp (-Y/a) (c, cx independent of Y) , 

and such functions are necessarily analytic, a fact that will be used in Section 4. Further, it is 
clear that first, the common discount factor exp ( - J d, tl p r in Y” may be absorbed in the 
conjugate variable cy, thereby justifying expressing \I, in terms of the observable current value Y; 
second, we require cz > 0, so as to ensure bounded probabilities for Y 2 0; third, the value of 
a must be the same for component systems that are in macrofinancial equilibrium; fourth, given 
the commonality of the value of CK, we may confine our considerations in equilibrium to Y 2 0, 
consistent with the limited liability of financial asset ownership; fifth, the constant c plays the 
role of the normalizing factor, and therefore may be dropped, with normalization by l/ JVT $I’ d!U 
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when required, where & denotes an integral over the domain of (p, n) E ‘93. 

The same argument applies to 3 as a whole (that is, the markets S + B), if we assume that 
3 is a small component of a larger set of asset markets, not only the financial assets in 3 *, but also 
the real asset markets in c?Z and E*. We conclude, therefore, that the distribution of financial assets 
in 5 may be described by the normalized probability density 

Q(Y) d!Z?= exp (-Y/a*) d!YJ 
JvT exp (-Y/a*) d!lJ (a* > 0) ? 

where QI* is determined outside of 3 (by equilibrium in 3 * and GE*). In the event that Y takes not 
continuous, but discrete values Yx, X = 1,2, . . . , the probability law assumes the form 

Q pi> = exp (--K/a*) cx exp (-YA,a*) (a* > 0; x = 1>2, - * * > - 

On this basis, let us turn to the problem of determining XP for N individual assets 
(distinguishing NS and NB as needed). Hidden in the foregoing argument has been the 
presumption that the composite assets are distinguishable, that is, that each asset may be 
specified precisely as to its constituent types pi = ICI, Ic2, . . . and quantities nkl, nk2, - - - . For 
individual assets, that presumption may be doubted. For, optimal investor behaviour in 3 precisely 
determines the path of prices p (t), but leaves indeterminate the path of portfolio composition 
n (t) (as shown in the Appendix). Such behaviour accords with the notion that financial assets 
are subject to a no arbitrage principle, whereby deviations from precise equilibrium prices are 
eliminated through large portfolio purchases and sales of indeterminate quantity. 

It seems reasonable to suppose, therefore, that at equilibrium prices, one cannot 
distinguish marginal differences arising from trade between investor portfolios. To do so would 
require information on market transactions that could not be obtained without disturbing the 
equilibrium prices concerned (with the presumption that investors eschew voluntary disclosure 
of their transactions). We shall embody this supposition in the form of the following axiom of 
indistinguishability. 

Axiom 1 Consider a financial system 3, consisting of a given set of utility maximizing asset 
traders (1-1) andfinancial assets of various types (nj, and denote marginal market asset prices 
bY PIG/L’ Suppose further that at a given time traders establish determinate values (i.e. precisely 
speciJied values) for the plEll through market transactions. Then, we regard as indistinguishable 
states of 3 at that time that darer only by a marginal redistribution of assets through trade. 

The economic interpretation is that for the aggregate portfolio n in 3 , marginally differing 
states ni and ns of equal trader utility, as evidenced by agreed marginal prices p,+, are regarded 
as indistinguishable. The application to our 3 is that the p,, evolve in a determinate way, and so 
a portfolio n is regarded as one and the same state regardless of the marginal redistribution of 
individual assets (that is, assets of nominal quantity h). Redistribution refers to not only ownership 
p, but also type K, since firms may issue and retire liabilities. In other words, the axiom implies 
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that we cannot attach a label (K, p) to an individual asset. 

Accordingly, individual assets are identified simply by price P,, and the aggregate 
portfolio n is completely specified by the set of numbers of individual assets N‘ at each price, 
of total number N = C N‘. We denote a specific set by (Ni, Nf , . . . ). We shall start by 
considering discrete single-asset price levels P,, L = 1,2, . . . , assumed fixed, and then pass to the 
quasi-continuous case P, -+ P (at which point, the density of states or state price density dV/dP 
will be introduced). 

Consider a market (S or B) of N individual assets with observed current return ?, where 
a-denotes an observed quantity (empirical datum). By virtue of the axiom of indistinguishability, 
a single state of the market is specified by (N1, N2, . . . ) with corresponding Y = p*h C, P,N‘, 
where p* is determined in E*. The potential values Yx of Y, each of which is defined by a set of 
values (Ni, Ni, e. e), 

Yx = p*hx P,N; 

for given p* and {P‘}, will follow the distribution law 

Q pi> = exp (--K/a*> exp (- b*hla*l C, WY) 
C,exp(--K/Q*) = C+P(- [P*hI~*lE,P,N;I)' 

To comprehend the empirical significance of ID, we must express it in terms of accessible 
quantities through direct calculation. 

III. CALCULATIONOFTHEPROBABILITYDISTRIBUTION~ANDMACROFINANCIAL 

For the calculation of Q 
moment generating function by 

(GAVERAGED)QUANTITIES 

and associated financial quantities, it is convenient to define the 

where the P, are regarded as given implicit parameters, Q (a*) E <p (a*; {p* hP,}); the successive 
logarithmic derivatives of @ with respect to Q* generate the corresponding central moments of Q. 
From log @ can be derived observable quantities of interest pertaining to the macrofinancial state, 
that is, probability averaged (or “phase averaged”) quantities: for example, 

(N‘) = --$& log@, 
‘ 

the average number of assets bearing price P,, where ( ) denotes a probability average (the 
mathematical expectation) and log the natural logarithm; and 

(Y) = (a*)2 &log a’, (3) 
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the expected value of Y in 3, which incidentally shows that Q* is determined by the value of 
Y = Y* in r (and in fact can be related to nominal output in CZ* on the basis of the commonality 
of Q* in equilibrium noted above). W ith the postulate that observed macrofinancial quantities are 
identified with probability averages, we have that (Y) = ?, and hence &? can in principle be 
inferred from p measured in 5 (given a specific model for 3). 

In the definition of Cp (a*), the ‘& signifies the sum over all admissible sets of 
UC N,2, . . . ). Let us assume that the total number of individual assets N for the market (S or B) 
is fixed. The underlying rationale is that the sum function (N) = C (N”) is time invariant (by- 
construction), and for large N 

fluctuations in N (the distribution around the mean) will become negligible assuming, for 
example, that the variance of N increases no faster than N itself. Hence N N (N), a constant. 
Then the admissible sets (Ni, Nf, . . . ) are those that satisfl 

c N; = N, (4 
and permutations of individual assets within a given Ni are regarded not as giving rise to different 
states but as part of the same N-asset state A. 

The system 3 will be completely specified macrofinancially once we stipulate one 
final quantity: the allowed residency numbers for each individual-asset state L. Reflecting the 
considerations of section 1, we adopt the following axiom. 

Axiom 2 Consider afinancial system 3 comprising markets S and B, with respectively N = NS 
and N = NB individual financial assets of denomination h, respectively individual-asset states 
(Lo > and (Lo >, and respectively support by underlying real assets and underlying fiat assets. 
For individual assets in S, the allowed residency N” = Ns” in a given state L’ is at most one 
(NsL = 0,l); for individual assets in B, the allowed residency N” = NB” in a given state ~~ is 
unlimited (NBL = 0, 1,2, . . .). 

Strictly speaking, the allowed residency applies to the underlying assets and their states, 
since financial assets represent claims on a cross-section of all underlying assets; for our present 
accounting purposes, however, we may regard the financial assets as being built up by marginal 
additions, with corresponding additions to the underlying assets. We shall ignore the possibility of 
hybrid real and fiat assets, for example convertible bonds, which may be regarded as assets whose 
expected quantity cannot be time-invariant under dynamic optimization. 

The problem of finding the distributions of (N”) with P, for S and B, that is, the 
equilibrium distributions of value, is thus reduced to calculation of @ (a*) in accordance with its 
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defining equation (l), subject to the condition (4) and the two-part condition, 

L = 1,2 )... ;x=1,2 )...) 

(5) 

where the notation (S) and (B), it is to be hoped, is self-explanatory. In essence, the axiom on 
allowed residency by financial assets supported by either real or fiat assets amounts to stipulating 
that they follow respectively the so-called Fermi-Dirac or Bose-Einstein statistics, familiar in the 
scientific literature: Feller (1968) ch. II, which cites the example that apriori one might expect 
typographical errors on a printed page to follow Fermi-Dirac statistics. 

As an illustration of the difference between the different ways of reckoning Xl?, consider 
the following example. Suppose that there is given a single asset, of denomination h and a 
certain type, that may assume either of only two states, PHI and PLO; and that there is an equal 
probability l/2 of either outcome. Further, suppose that there is given a second single asset 
of the same type. When assets are distinguishable, there is a probability l/4 of both assets 
residing in the same state, in accordance with the rule for independent events of multiplying 
probabilities. In S, the probability of both assets residing in the same state is 0; in B, it is l/3, 
since there are only three independent states (P HI P HI? PHIPLO = PLOPHI, PLOPLO) when 

assets are indistinguishable. This example verifies the assertion made earlier that the assumption 
of distinguishability is implicit in the argument of statistical independence. 

Writing 

where x, = exp 

we see that (4) will be satisfied provided that @ consists solely of all terms that are homogeneous 
of degree N (= NS or NB) in the {zL} . Because the N{ appear as exponents in a’, (5) generates 
as potential combinations in xx a product of geometric progressions (of which, the homogeneous 
terms are to be retained). In the ~th factor of potential combinations, there appears for S, (1 + zL), 
and for B, (1 + zL + 2: + . . . ) = 1/ (1 - zJ. H ence, for @ we obtain the expressions 

n (1+ 4 (S) 

rI L (1: 2‘) w > 
subject to the requirement that out of the product nL one retains solely terms that are homogeneous 
of degree N in the {zL} . 

Stated thus, we see that we can apply Cauchy’s integral formula to obtain explicit 
expressions for a. Working in the complex plane, let us introduce the auxiliary multiplier p* 
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through the two-part definition 

m*> = j--J (1+P*4 (S) L 
w (P*> = l-I ‘ (l-i*&) (B) 3 

where p* is a complex variable that plays a role similar to that of a Lagrange multiplier for the 
condition (4), with the * notation anticipating that p* is determined in r. Then Q is given exactly 
by an integral around a closed contour in the complex p* plane that encircles the origin p* = O- 
(but no other singularity of the integrand, and is assumed to lie within the circle of convergence of 
w v*>>: 

(i E +Gp*N+l E (@‘)Nfl>. 

The evaluation of the contour integral (6), a formidable task in general, is greatly helped 
by two key simplifications: that N + 00 (by assumption), which permits the use of asymptotic 
methods; and that the integrand has a unique minimum (as we shall show), which permits 
evaluation at that point alone. Consequently, the integral can be worked out by the saddle point 
method (Bleistein and Handelsman, 1975, ch. 7, sect. 2), which in its more general form of the 
method of steepest descents was originated by B. Riemann and P. Debye. 

Consider the behaviour of the integrand in (6), w (p*) //?*N+l, for /3* real and positive. 
For /3* + 0, the integrand is indefinitely large and positive, for both S and B. The logarithmic 
first derivatives are given by 

d log w v*> 
dp* -pi= 

d w w*> 
dp*l”gp7Ti = 

which, for p* -+ 0, are both large and negative. As p* increases, they both increase. For 
B, assuming for simplicity that the lowest price level is P, = 0, as p* -+ 1, the derivative 
becomes indefinitely large and positive (for fixed large N). For S, as p* --+ +co, the 
derivative becomes positive and remains so. To see this, note that its limiting value becomes 
(l/P*> {- (N + 1) + C, 11, an d we have C, 1 > (N + l), since C, 1 represents the number of 
states, some of which will be empty by virtue of (5). 

Therefore (since log constitutes a monotonic transformation), w (p*) /p*N+l possesses 
a unique minimum, for both S and B. We denote the corresponding (real) value of p* by p*@, 
which is determined by setting d (w (p*) /P*N+l) /dp* = 0 (the first order conditions, which we 
shall return to shortly). The values of the second derivatives, which we shall denote by a2, are 
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given by 

(p = d210g w CD*) -+I+~ 2 

dF2 P*N+l ‘ (1+-i: zL)s (S) 

o.2 = d210g” = 2 dP*2 P*N+l y+c ‘ (1-P*%)2 (B) 9 
and, unless qualified, we shall mean the stationary point value c2 = 0 (o*‘)2 > 0. (Case S, - 
for which we may have ,S* --+ +oo and c2 < 0, illustrates the point that, in order to establish 
the existence of a unique minimum or maximum, it may be neither necessary+ase S-nor 
sufficient that the second derivative be always positive or negative, respectively; a trivial example 
of insufficiency being log 2, 0 < 2 < +oo, which has no maximum.) 

Assuming that o2 is very large of the order of N (a2 N N, which we shall verify below), 
the saddlepoint method shows that the value of (6) consists in the contribution from that point 
alone, with the dominant term derived from a Taylor series expansion of log w (p*) //?*N+l in the 
neighbourhood of p*@, 

1% w (p*) /P*N+l = log w (p*“) /,*@N+i + $ (p* - p*@)2 02 + . . . ) 

to give: 

where 7 represents the imaginary part of p*. (In intuitive terms, at the unique saddle point 
,S*’ = p*@ + i0, the modulus of the integrand attains a maximum, and its phase is stationary 
for a small, purely imaginary change i dq, that is, a contour that cuts the real axis orthogonally 
at that point. In the limit N -+ 00, the contribution from the neighbourhood of ,S*’ dominates 
all others, which are self-cancelling because of infinitely rapid oscillations of phase.) Hence, 
@  (a*) = (w (p*“) /p*QN+l ) (l/d!) and 

log <P (a*) = - (N + 1) log p*’ + log w (,8*“) - ; log (27~7~) . 

Under the maintained assumption of N + 00, we can set (N + 1) N N, and neglect 
the term log (27ra2), since (l/N) log N + 0 as N -+ 00. Evidently, N very large requires 
that N >> log N. It is clear that in many circumstances, N being large cannot be regarded as a 
self-contained fact, but rather is a consequence of M, the number of investors, being large. We 
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arrive at 

log Q (a*, N) 

{ 

-Nlogp’+ CL1og (1 +P*‘exp- [p*h/a*] PL) (S) 
= 

-Nlogp@ - CL 1% (1 - P*‘exp - [p*h/a*] E) (B) , 

reintroducing the observable prices P, (with single-asset Y, = p* hP,). @ (a*, N) becomes a 
function of the parameter N by virtue of the counterpart constraining condition, and p*@ enters 
the expression for @. - 

From the first order conditions noted above, d (w (p*) /pN+‘) /d,0* = 0, and setting 
(N + 1) N N, we infer that 

{ 

CL l/ {exp (v* + [p*h/a*] PL) + 1) P) 
vv = (7) 

CL l/ {exp (v* + [p*h/a*] Pi.) - 1) (B) 

where we write ,B*@ = exp [-v*] for notational convenience, and we set N = (N), which was 
tacitly the case hitherto (recall the remarks leading to (4)), Q = @ (cy*, (N)). These equations 
may be thought of as determining (N/! given u* (from r), or alternatively, as determining z? 
given observed fi in 3, with (N) = N (and Q* and the ,o*hP, considered as given parameters). 
Additionally, applying (2) to the expressions for log a’, we obtain 

(N‘) = 1 
exp (v* + [p*h/a*] PL) + 1 (S) 

(N‘) = 
1 

exp (v* + [p*h/a*] PJ - 1 (B) 

from which it is clear that (7) represents the discrete probability distributions IP (normalized to 
(N)) over states defined by price P,, (N) = CL (N‘). 

Let us pass to the quasi-continuous limit 

c (N‘) + 6 l”‘*’ (N(P)) %dP. 
‘ 

Here N (P) denotes the residency of state P (the analogue of N‘). r > N denotes the upper 
bound of N, whose existence is ensured by the assumption that n is bounded by a, A (Appendix), 
and r may be interpreted as a counter-party creditworthiness constraint on investors. P 5 F/p* h 
has an upper bound, given h > 0 indivisible, because when wealth is bounded, which we assume, 
then Y 5 P is bounded almost always. 

dV (P) /dP denotes the state price density; it is this quantity that constitutes the analogue 
to given {P,}, since what matters in the quasi-continuous case is (relatively) how many states 
occur in a small price interval dP. dV (P) /dP is defined by way of the definition of the density 
of states dV” (Y) /dY as follows. V” (Y) denotes the volume of single-asset phase space for 
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portfolio returns y up to Y, y < Y, where the dummy integration variable F 

specifies price and % specifies the arbitrarily assigned ordering of a single asset in a portfolio 
(% 2 r is assumed to vary over a range sufficiently large as to be quasi-continuous). V” (Y) 
(normalized to a total number of states F) is defined by 

where the linearity of V” in Y is a consequence of the positively linear homogeneity (actually, for 
financial assets, linearity) of y in price F: 

It is the degree of homogeneity interacting with the dimensionality of risk that will prove decisive 
in determining the effect of exogenous risk on the probability distribution (Section 4). 

The equivalent state price density is defined by the circumstance V (P) = V” (Y), 
implying that 

dV (P) = dV” (Y) dY 
dP 

p*h r -== 
dY dP y ’ 

that is, dV/dP is constant for financial assets. The transition from discrete to continuous rests 
on the notion that a single-asset state is specified by an infinitesimal element d27 E d% dp of 
the single-asset phase space, and consequently the number of states in a given price interval is 
measured by (strictly speaking, proportional to) the corresponding volume. (A deeper justification 
is provided in Johannes (2001), namely that the volume of phase space represents the unique 
Haar-von Neumann invariant measure over the dynamical evolution of 3.) 

We arrive at the quasi-continuous form of (7): -- 
(p*hN/Y) f’pLh l/ {exp (v* + [P*h/a*] P) + 1) dP (S) 

(N) = 
(p* hr/q s,“l” h 

(8) 
l/ {exp (v* + [p*h/a*] P) - 1) dP (B) - 

We see that (N) is directly proportional to 7, in accordance with the natural suppositions that 
(N) will vary in proportion to the size of 3 in some sense, and that N is a measure of the size 
of 3. Therefore, we can now assign a more precise meaning to the limit (N) -+ 00, namely, we 
stipulate that as (N) ---) 00, the ratio (N) /r is subject to a fixed upper bound. Consequently, u* 
remains bounded below and ,8*’ above, as (N) --+ 00. We thus verify (from the earlier derived 
expression for a2) that g2 is very large of the order of N as (N) 4 00. 

We may identify (N) with s Xl? dV = s XI! (dV/dP) dP (normalized to (N)); that is, 9 
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represents the (relative) probability weight (expected residency) of a given state: 

1/ {exp (v* + [p* h/a*] P) + 1) 69 
Q(Y) z iP (p*hP) = (9) 

1/ {exp (v* + [p*h/a*] P) - 1) (B) * 

The equilibrium distribution of value (equivalently, price) with no exogenous risk is given 
by the integrand in 

p*hP 
exp (v* + [p*h/a*] P) + 1 

dP (S) - 

p*hP 
exp (v* + [p* h/a*] P) - 1 dP (B) - 

For (S), vi E (--00, +oo), and for (B), vfj E (0, +oo). For both (S) and (B), the distribution 
of value (or price) tends to zero as P --+ 0 (even if u* = 0), and so the integrals converge. (As a 
technical matter, the values of these integrals for u* = 0 and with the upper bound i&mite can be 
expressed in terms of the gamma and Riemann zeta functions through integration by parts.) 

Finally, we see again that the informational content of XP, (N), and (Y) can be deduced 
from knowledge of 

1% Q (a*, (N)) P-8 
(N) u* + (p*h/Y) r ~o”p*h log (1 + exp - (u* + [p* h/a*] P) ) dP (S) 

= 
(N) u* - (p*h/q 7 ~o’lp*h log (1 - exp - (u* + [p*h/a*] P) ) dP (B) , 

where quasi-continuous log @ is implicitly dependent on the quasi-continuous price structure 
dV (P) /dP. For instance, s XP dV takes the form 

where C denotes the Legendre transform: 

c(log@((N);.))=logQ-(N)dlog<P/a(N). 

Thus, the macrofinancial state of 3 is specified by the macrofinancial parameters Q* and (N) (or 
u*, equivalent to (N), by virtue of (8)). 

IV. EXOGENOUS RISK AND ITS EFFECT ON PROBABILITY DISTRIBUTION (Xl?) 
AVERAGING 

The price structure in 3, { PL} or its quasi-continuous counterpart dV (P) /dP, we have 
regarded thus far to be fixed. Consider now circumstances in which prices P, and consequently 
price structure dV/dP, will vary with fluctuations (S) E Sx in exogenous observable parameters 
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x = (xl,... , xL) in ~5, and with shifts in cash allocations to 3 from r, giving rise to shifts 
(A) E Act!*, A(N) ( e q uivalently, Au*) in the macrofinancial parameters. The (S), but not the 
(A), are assumed to be small (in the sense of justifying a Taylor expansion to first order only). 
More generally, we may speak of (6, A) in E*. 

The exogenous parameters and cash allocations are assumed to change not continuously, 
but at discrete points in time (discrete cash trades being consistent with the considerations of 
Section 2 and the Appendix applied to F). Accordingly, following the occurrence of a given set 
of (6, A), we can envisage a period of time sufficiently long that 3 comes into internal equilibrium 
through market trading, yet sufficiently short that the given (6, A) continue to hold, and the state 
of 3 constitutes a temporary deviation from its previous equilibrium with E*. In mathematical 
terms, interactions of 3 with external markets c?Z* constitute a set of measure zero (through time), 
and hence external conditions may be considered fixed almost always. In this way, we can give a 
rational meaning to the notion of equilibrium in the subsystem 3 following occurrence of a set of 
(4 A>. 

The post-(6, A) (“risky”) equilibrium is therefore completely described by s !P dV 
(equivalently, log a), provided that we admit given AQ*, A (N) (or Au*), and 6~. Our method of 
characterizing risky equilibrium consists in calculating \I! under the assumption that the (6) are 
small, and from its functional form inferring the changes in P and dV/dP, and thus the risky 
distribution of P. We shall first develop the formalism and then give the financial interpretation. 

Let there be given exogenous risk parameters x = (x1, . . . , x”) , x real, pertaining to a 
particular market S or B, where fixed integer L denotes the dimensionality of risk, in general, 
different for each market, Ls # Lg. (Recall that bonds are of indefinite maturity, and therefore we 
interpret x for B as credit risk, we have not differentiated the treatment of assets in B by maturity 
because we wish to bypass issues of term structure.) The variation of P with xx for asset K 

8P (3 8xX K 
(A = 1,. . . ) L, K = 1,. . . ) K) 

is assumed to be a determinate quantity, where ( ), denotes that the quantity enclosed in 
parentheses pertains to assets of type K. (and for the numeraire (8P/ax”) 1 = 0). By “determinate” 
we mean that there exists a function determining the quantity, but we do not assume that the 
function is known. 

We continue to presume that the type /G cannot be identified for any individual asset, and 
accordingly the risky single-asset distribution J \I, dV that we seek must be expressed independent 
of any particular K. Now the single-asset aP/3xx is a weighted average of the (dP/Oxx),, 
weighted by the corresponding K-asset distributions XIJ&. In turn, the \k, are determined by 
the normalization s QK dV, = (N”), where the amounts (N”) of assets K are assumed to be 
observed data. Hence, sing&asset 8P/8xx and the corresponding dY/dxx are determinate. It is 
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convenient, therefore, to define the determinate 

dY 
7x= p ( > (A = 1,. . . ) L) . 

Further, we assume that in principle the (aPm), are observable quantities (again, without 
presumption of identifying an individual asset). 

In general, we would expect p* to vary with the xx; that variation, however, may be 
subsumed in a common Ap* = xx (dp*/dxx) Ax’, and (p* + Ap*) is regarded as a given - 
constant by virtue of our assumption of equilibrium in 5. We have in mind the case of uniform 
Ap* and ACX* for stocks and bonds, constituting equilibrium throughout 3, though the formalism 
can equally be adapted to the case Ap; # Ap;3, and similarly for ACX*. 

Because of the given fluctations (6, A)-treated as fixed parameters-we need to m-cast 
single-asset J Q dV in terms of the risky phase space for 3, which will extend over the random 
variables, single-asset N and P. Since the only direct effect on (N, P) is through qx, we can 
express the marginal volume of risky phase space, dV6, as 

Accordingly, from (9), the (integrated) risky distribution J Q(sy*) dV” t&es he form 

J qj(W ,-jVb = 
s l/ {exp [u* + Au* + Y@*)/ (a* + A,*)] + l} dVb (s) 

s 1/ {exp [u’ + Au* + Y@lA)/ (a* + A,*)] - I} dV” (B) 
where 

Y@,*) = (p* + Ap*) hP + crjx 6x? 
x 

It is clear that Y(atA) ’ 1s linear homogeneous (positively) with 

Y@*quP,a?j) =aY(“‘*)(PJ); a>o. 

Observe that (P) increases inversely with Ap*, with other macrofinancial parameters constant, 
because as Ap* decreases, the weight of the distribution is shifted to higher P. Equivalently, we 
may observe that the distribution of Y@y*) is independent of (p* + Ap*), and hence if the latter 
changes, then P changes in an offsetting fashion. 
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We see that 

q&W (y(W); a* + ACX*; u* + Au*) 

takes an identical form to 9 (Y; a*; u*). Further, we see that, since the 6xX are small, the range 
of Y@*) will take the same functional form (0, Y@f*)/ (p* + Ap*) h) as does Y, provided we 
assume that for Y(slA) + 0, xx qx 6xX 1 0, consistent with limited liability. Therefore, 

J 
~(64) dV6 = 

J 
q,(4*) dV6 

,jyW) 
dy(W) - 

takes the same functional form as does J IP dV (with allowance for the terms Ao*, Au* and Ap*), 
excepting to the extent that dV6/dY( 6*) differs from dV/dY (and the same remarks as for Y(syA) 
apply with respect to P). Recall that we define V” (Y) to be the volume of single asset phase 
space (normalized to r and with Y rather than P the functional argument: V” (Y) = V (P) ). 
Therefore, the counterpart risky volume is defined by 

V”” (y@Jy = y(7 1/ 
( l<y d’ub) ~<yW~ dD67 

where we again assume that Y(s,A) is bounded above by P (and for simplicity write P for Y@t*), 
r for N@*) E N + AN, and y is the dummy variable corresponding to Y@*)). Since Y@l*) is 
linear homogenous (in fact, linear) in (P, q), the relation 

y (P, r]; *) < Y@*) 

is equivalent to 

Y (ply @,a), q/yW); .) < 1, 

and hence, recalling that d!@ is proportional to dV” = dN dP dql - - - dqL, Vo6 becomes 

~06 (y(W) = 

+J dq@) (yW))l+LJ da" = -& (y@'*))IfL, 
y<F Y<l 

implying that 

dV”” 
dy(“,*) = 

that is, the density of states varies as the Lth power of Y( stA), L being the dimensionality of risk 
in S or B: L equals Ls or Lg. 

Seeing, therefore, that the risky density of states has been established, we arrive at the 
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J T 
*,(s,a) dVo6 

0 
dY(6A) dY(“lA) = ? 

exp [vi + Au> + Y(6fA)/ (a* + Aa*)] - 1 dy(W 

with 

Y(slA) = (p* + Ap*) hP + c qx sxx. 
x 

In terms of price: 

J P 
Q(‘%*) dv6 dp@ ,*) = 

0 dP(W) 

{J P bs (p(4a))Ls 
o =P b’; + A$ + (p* + Ap*) hP@,*)/ (a* + Aa*)] + 1 dp(W 

{J P bB (pw)LB 
o =P [u;3 + Au; + (p* + Ap*) hPW/ @* + &,*)I _ 1 dp(W) 

with 

bs = (1 + L&y) iv (p* + Ap*) h l+Ls 
P > 

bB = (l+Lgv ((p* +;p*) h)l+LB 

and 

and 
7 N F/ (p* + Ap*) h 

(S) 

- 

03 

(11) 

(S) 

(B) 

These formulae for distribution of price constitute the principal empirically testable content of this 
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paper. 

Observe that P@t*) is the observable price; that Ls and LB are regarded as fixed integers 
to be determined empirically; that h is regarded as a constant to be determined empirically; that 
the constants b premultiplying the integrated distributions are essentially immaterial, because they 
are absorbed by normalizations; and that the upper limit P in the integral becomes immaterial, 
provided that 9( ‘I*) falls to almost zero within the observed range of upper prices. (For the 
purposes of the price distribution, it seems likely that the upper bound P could in many practical 
cases be approximated by +oo in view of the factor exp [(p* + Ap*) hP(‘j*)/ (a* + A,*)] in- 
the denominator of the integrand; for other purposes, however, such as the variation of (N) with 
(Q* + AQ*), the finiteness of P may become important.) 

Further, observe that 

(u; + Au;) # (v; + Au;) 

(in general), the parameters being determined by arbitrarily given quantities of respectively stocks 
and bonds; and that, under the assumption of equilibrium in 3, (ar* + Act*) is common to S 
and B, and (with the assumption of investor indifference to the kind of asset) (p* + Ap*) also is 
common. Henceforth, we drop the risky suffix: for example, we write Y(‘j*) E Y, P(slA) E P. 

We shall not attempt in this paper a comparison with empirical data, such as the previously 
cited Jackwerth and Rubinstein (1996) and Kim (1999). Let us make a few simple observations, 
however, about the formulae we have derived for the distributions of price. 

First, for stocks, observe that for prices P sufficiently high that 

exp [u> + Au: + (p* + Ap*) hP(61A)/ (a* + A,*)] > 1, 

the distribution takes the form of a gamma function: 

I? (n + 1) = Jrn ?exp (-2) dx (= n!). 
0 

(This also holds true for all P in the case of the quantity of stocks issued being sufficiently low 
that exp [u; + Au:] >> 1.) It is known that the gamma function can approximate a lognormal 
function with the empirically desired differences of a high peak and a fat left (low P) tail; the tail 
of the exact form of the distribution for P + 0 varies as PL, just like the gamma function tail, 
aside from a constant factor exp [uz + Au;] + 1. Casual observation suggests that fitted Ls would 
be relatively small, perhaps Ls N 101. 

Second, for bonds, observe that for relatively high values of LB, perhaps LB N 102, the 
distribution will be approximately an increasing exponential, up to a very sharp peak, since xn 
behaves approximately exponentially for large n, and x/ (exp [x] - 1) --+ 0 as x + 0. Beyond the 
peak, it will be a sharply declining exponential, varying as 

exp - [u;3 + Auk + (p* + Ap*) hP(6yA)/ (a* + A,*)] . 
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That is, for large LB the bond price distribution matches prima facie the empirical data on the 
distribution arising from credit risk, provided that we interpret short-run changes in credit risk 
(e.g. quarterly) as realizations of expectations. 

Third, for stocks and bonds, we can estimate the order of magnitude of 

(u; + Au;) 

and LB from the empirical widths of the price distributions. To see this, consider the theoretical 
upper halfividth of each distribution, defined as the difference in price AP > 0 from the peak- 
at price P to a value at P + AP that is much smaller than the peak. For stocks, considering 
the case of the quantity of stocks issued sufficiently large that exp [u; + Au;] + 0 (implying 
[uz + Au;] < 0), the peak occurs at around a value of P given by 

(p* + Ap*) hP = - (a* + Aa*) (u; + Au;), 

since the factor l/ {exp [u$ + Au; + (p* + Ap*) hP/ (a* + Aa*)] + 1) falls rapidly from 1 to 
0+ around that value. The halfwidth is of the order of the inverse quantity multiplying P in that 
distribution: A P N (a* + Aa*) / (p* + Ap*) h. Hence 

AP 
?- N [(u; :Au;),’ 

as to order of magnitude. Empirically, we find a halfwidth of roughly 10 percent: AP/P M 0.1 
(Jackwerth and Rubinstein, 1996), implying that (ug + Au;) N -10. For bonds, presuming 
that exp [u;S + Au; + (p* + Ap*) hP @t*)/ (a* + A,*)] >> 1 at the turning point (since 
(~5 + Au>) 2 0 ), we see that at that point P = LB (a* + Aa*) / (p* + Ap*) h, and hence 

AP 1 -N-* 
P LB 

Since empirically, the upper halfwidth is roughly 1 percent, AP/P x 0.01 (Kim, 1999), 
we have LB N 102. (A note of caution is in order here for stocks. We have assumed that 
exp [u; + Au;] ---) 0; if, to the contrary, one considered the case of a small quantity of 
stocks, exp [uz + Au;] + +oo, then an argument analogous to that for bonds would lead to 
AP/P N l/ Ls, giving the result LS N 101. To distinguish the two cases of [u; + Au;] would 
require careM empirical comparison, or other theoretical arguments.) 

Remark 2 The theory holds independently of some commonly invokd special assumptions such 
as specialforms for the utility functions (contrast the treatment in the Appendix); the existence of a 
representative agent-to the contrary, agents are heterogeneous in behaviour; zero net issuance of 
new securities or an arbitrary assignment ofJirms ’ cashflows between net issuance and dividends; 
and an exogenous (more speciJically, jixed) interest rate. 

Let us turn now to a financial interpretation of the theory, that is, an interpretation of the 
changes in the macrofinancial parameters: a*, (N) (or the counterpart u*), and the x. We shall 
find that we can decompose changes in (Y) (but not Y, which is a random quantity) into changes 
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attributable to market fundamentals, investor sentiment, and investor acquisition of securities. 
Since the relation will prove to be a differential one, we henceforth consider only infinitesimal 
variations in the macrofinancial parameters: dx, da*, and d (N) (and the counterpart du*), and 
the market considered will henceforth be the aggregate market 3 = S + B. We shall incidentally 
provide some more rigorous underpinnings of the preceding results. 

Consider first, a change in market fundamentals dx from a prevailing value x. Then the 
effect of dx on 3 = S + B is determined in terms of the observable (dPx)& and 6’=$, 
as can be seen from the following considerations. It is convenient to conduct the argument in _ 
discrete terms, momentarily reverting to the notation of the earlier part of Section 3, and to 
consider the component factors of Y = p*hP. In just the same way as for <P and (N”), define the 
corresponding quantities for each component by asset type {E}, that is, the generating function 4, 
and the average (expected mean) ( NLK) &, excepting that the averages pertain only to the K phase 
space and ( ), denotes an average over that phase space. 

Consider the relationship of (N”) to (N”“). Since N” = C, N”“, we have 
(N”) = C, ( NLK) (by the theorem that the mean value of the sum equals the sum of the 
mean values, regardless of whether or not the random quantities are independent). Further, since 
market Y = C Y, and the component Y, can be expressed as functions of their respective 
phase space coordinates alone, we can equate (N”“) = (N”“),, and hence (N”) = c, (N”“),. 
Consequently, by (2), d log @/aP, = C, 8 log qS,JaP,. By (3) and a parallel argument applied to 
Y = C Y,, we find that d log @/a~* = C, 8 log qb,/tlp*. 

Hence, 

(A = 1,. . . ) L). 

The third line of the above set shows that 8 log Q/ax’ is determined in terms of the observable 
(aP=), and 8*xX, since we always ident@ phase space averages with observed 
macrofinancial quantities: (dP/&‘), = (aPm), and likewise for p*. From the last line, we 
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can write 

where dW expresses the change in (Y) attributable to a change in market fundamentals dx. It is 
clear that we refer only to small changes, and that the meaning of small is the validity of a Taylor 
expansion to first order for log Q (a necessary condition for the permissibility of such an expansion 
being that the functions that appear in @ are analytic, as noted in Section 2). Underlying this 
expression for dW is the assumption that markets are fiictionless and, in particular, that there are 
no information costs in observing the x. 

Consider second, a given change in cash allocations to 3 from r (with fluctuations in 
real economy variables zero: dx = 0). As stated, this intuitive notion is not well defined, since 
investors who buy are matched by investors (or market making intermediaries) who sell. We 
can arrive at a consistent definition of the financial flow in terms of the change in market value 
in the following way. Think of 3 c E as a national economy comprising a fixed set of residents 
{p}; then (Y) can be thought of as the financial asset component of national income. FC E* is 
regarded as the world economy. 

Consider a non-zero fluctuation (Y) --+ (Y) + d (Y). Setting aside for the moment any 
capital account transactions, d (Y) has a counterpart in E in a fluctuation in the current account 
surplus CA of the same magnitude and sign: 

d(CA) =d(Y). 

For example, we can think of d (CA) as resulting in an accumulation of currency on the balance 
sheets of the firms in E, leading to an equal increase in the market value of firms, d (Y), referring 
to aggregate 3 = S + B (recall that in @* there are no foreign currencies and only private agents). 
Stated more generally, to changes in the current account there correspond changes in national 
income, of which a component is financial asset income. In this way, we can associate changes 
in the value of financial assets arising from external financial flows with a notional component 
of the current account, which we shall call the financial asset component of the current account, 
denoted by dX in the infinitesimal case. Formally, we define dX to be that part of d (Y) that is 
not attributable to changes in fundamentals: 

dX = d(Y)-dW by definition 

= d(Y) +a*c Fdx*, 
x 

in the case of a closed capital account, consistent with the notion that current accounts plus 
currency flows sum to zero. Further, to the extent that, in particular instances, one can regard 
changes in valuations (d (Y) - dW) as driving fluctuations in the current account, one can 
identify dX with investor sentiment. In terms of the macrofinancial parameters, a change d (Y) 
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with a non-zero component dX # 0 is reflected in a corresponding change da*, which shifts the 
probability distribution Q from lower to higher Y if da* > 0, and conversely. (We deliberately 
ignore the possibility of d (Y) arising from domestic causes in E, for instance a technology shock, 
which are not the subject of our present inquiry.) 

Considering at last an open capital account for E, a change d (Y) arising from a change 
d (N) in (N) signifies the acquisition of assets abroad. Residents {p} trade with non-residents 
$ {p} the set of assets of given types {K} (-for simplicity, we exclude the possibility that the 
types {K} might be enlarged). - 

These considerations lead us to introduce the fluctuations da* and d (N), in addition to 
dx. The consequent change d log @ in log Q> is found by a first order expansion of (10) to be the 
expression 

dlog@=c Fdx”+-& (Y) da* + u* d (N) . 
x 

Let us first clarify the relationship between (N) and u*, so as to characterize XF accurately 
(although in fact we shall not be concerned with q explicitly in what follows). Note that log @ 
is independent of u*, d log @/au* = 0, which follows from (10) and (8); equivalently, we may 
say that log ip ((N) ; .) and (log <p - (N) u*) are reciprocally Legendre transforms the one of the 
other. This means not that u* is superfluous, but rather that it is an alternative (a dual variable) 
to (N), and reciprocally the one determines the other; that is, u* = u* ((N)), and (N) + A (N) 
determines a corresponding u* + Au* through (8). Accordingly, we replace u* by u* + Au* in KP. 
The counterpart to A (N) is given by the Au* term in \I, (stated more precisely, we require u* to 
satisfy --a (log Q - (N) u*) /au* = (N) + A (N)). 

Since we may regard (Y) as (Y) ( CX*, u*, x) in view of the form of the distribution Q, we 
could expand d (Y) in the usual way by the first order differential form 

d(Y) =gd,*+gdu*+F gdxA. 

Superficially, one might suppose that this form provides a basis for decomposing d (Y) into 
separate elements: for instance, associating the first term with a change in current account flows. 
But, in fact, the expression conjures up a mathematical illusion, for we do not know whether, for 
instance, (a (Y) /aa*) d (u* can be expressed as a differential of a function of the state variables 
(the observable macrofinancial parameters a*, (N), xx, or their duals, (Y), u*, (l/a*) qx), or 
whether, to the contrary, a finite change s (a (Y) /a~*) d a* is path dependent. Put another way, 
we have no assurance that a zero current account flow corresponds to da* = 0, or even that there 
exists any such correspondence df = 0, where f is a diction of the state variables. 

In mathematical terms, the problem here (with 2 + L > 2) is essentially the same as the 
problem of integrability in utility theory (with the number of goods in the consumption bundle 
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> 2). The Pfaffian (the first order differential form) cannot be assumed apriori to be an exact 
differential (that is, a differential of a function of the state variables), unless its coefficients satisfy 
certain reciprocal integrability conditions. (And it seems that it may be possible to apply the 
probabilistic approach of this paper to the theory of consumer’s preference, treating the quantities 
of goods as random variables, so as to establish integrability and to construct a utility function, in 
a manner that bears some similarity to von-Neumann-Morgenstern utility.) 

By use of the expression for d log CD, however, we can construct a satisfactory 
decomposition (one that establishes integrability). From (12) it follows that - 

d(Y)-dW 

= d(Y) +ct*c FdX” 
x 

= d(Y)+a* dloga-5 (Y) da*-v*d(N) 

= a* 
( 

$w)-& (Y) da* + d log <p 
> 

- Q*V* d (IV) 

= a*d f (Y) + log@ - a*v* d (N) 

Hence 

d(Y) = ---a* c 
dlog@ x 

x 
axxdx +a*d L (Y)+log@ a* -a*v*d(N) 

= c (Y) + log@ - o*V* d (N) 
x 

and the exact differential 

d -!- (Y)+log<p a* > 
may be equated to (l/a*) dX, by noting that no change in market fundamentals and a closed 
capital account correspond to dx = 0, d (N) = 0 (again, with the underlying assumption of 
frictionless markets). 

Accordingly, we may write the important formula 

d(Y) =dW+dX+dZ (13) 
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where 

dW = c rjAdxx 
x 

(14) 

and interpret change d (Y) as attributable to changes dW arising from market fundamentals, dX 
from investor sentiment, and dZ from investor acquisition of securities. - 

Very briefly, let us sketch out an argument as to how the formulae (11) suggest that small 
random cash allocations to the market could generate a logarithmic Wiener price process through 
time. Throughout this paper, we have been concerned with momentary equilibrium at a point in 
time. Consider now a small fluctuation So* (t) that varies through time with, for simplicity, a 
mean of zero. 

A fluctuation So* can be viewed as a change A (Y) in the expected portfolio value (of S 
or B), arising from random allocations of cashflow between r and 3. (Such random allocations 
should be viewed not as deviations from equilibrium, but as components of an equilibrium that is 
dynamic, according to the work of this paper.) The change A (Y) will be reflected in a changed 
expectation of capital gain in price. From (1 l), the equivalent fluctuation in price is given by 

The deterministic Euler-Lagrange optimal path condition is (from the Appendix, using the 
transformation from current to total return) dp,/dt = fpp,. Dropping the IE, and writing P for 
price and p* for p, the stochastic version of the condition becomes 

dP Sa* (t) 
P 

= p* & - - 

= p* dt - dBa;t) , 

where we write dB = SQ*/LY* (purely for notational simplicity). We see that the factor l/P 
naturally occurs, that is, the random disturbance B can be written independently of P, as a 
consequence of (11). This factor ensures that the presence of B does not contravene limited 
liability. Additionally, it is suggestive of a logarithmic price process, which may arise in the 
following way. 

Suppose that B (t) is a stochastic diffusion (or stochastic differential) process, that is, a 
stationary Markov process for which the 

B (t2) - B (t1) , * . * , B (tn) - B (Ll) (t1 < t2 < * * * < it,-1 < tn) 

are mutually independent random variables. Then, if our assumption that &X*/Q* << 1 is 
to hold true, it must be the case that the distribution of B has a finite second moment. For, 
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the equilibrium distribution Q (P) for 5 is characterized by the given a*, with (so*) = 0 by 
assumption, and with the dynamic equilibrium constituting only small deviations from XPa, 
the distribution with fixed QI*. For @a, because it satisfies (1 l), the second (central) moment 
is given by a2 log @ (cr”) /a (l/a*)“. H ence, the second moment of Q is approximately equal 
to a2 log @ (a*) /a (1/Q*)2 (th a is, neglecting the So*) and that quantity is finite. Then, the t 
corresponding moment of the distribution for CX* must also be finite, since in equilibrium, P and 
(l/a*) are dual variables, and their respective distribution second moments are reciprocals one of 
the other, given appropriate normalizing constants. (To see this, observe that the dual distribution 
for (l/a*) can be derived from the Legendre transform of log @ (a*; .) with respect to the variable 
Q*, to be distinguished from the transform with respect to (N) discussed earlier.) 

W ith a finite second moment, and excluding by assumption the possibility of jumps in 
B (t), that is, assuming B (t) is continuous with probability 1, it follows that B (t) is Gaussian, 
with a variance o2 (t) that is proportional to t: c2 (t) = ta2-see, for instance, Doob (1942), sect. 
3. W ith the assumption that the drift coefficient (the interest rate) p* (t) is slowly varying, we see 
that dP/P follows a Gaussian distribution, and P follows a logarithmic Wiener process. (More 
generally, if the second moment of B is not finite, then B, and consequently P, will follow a 
general stochastic difksion process-Doob (1942), sect. 5.) 

Finally, let us observe that the methodology of this paper has expressed in an essential way 
the character of assets, namely real or fiat. It seems reasonable to suppose, therefore, that it could 
be carried over, mutatis mutandis, to other applications: for example, to houses as real assets and 
to their distribution by price; to insurance contracts as fiat assets and to their distribution by net 
income; and, more generally, to derivatives pricing. 
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APPENDIX I 

Given the 3 defined in section 2, assume that investors are infinitely long lived and supply labor 
lp inelastically, with the time path of wages wcL exogenous. We shall always consider the case 
where n is bounded by arbitrarily given functions, 14 (t) 5 n (t) 5 5 (t), which may be interpreted 
as creditworthiness constraints on exposure to counterparties. Stipulate that the optimal path 
O& - n@ (t) (0 from OSOC, Greek for path or way) lies on the interior of the bounded state space 
U . W ithin this framework, we shall find that the microfinancial state is indeterminate, in that 
dn@/dt and n@ (t) are indeterminate, that is, may take any of a KM-fold infinity of solutions; 
nevertheless, the subsequent development in section 2 shows that the macrofinancial state is 
determinate. 

So as to highlight the Lagrangian of the problem and the significance of its invariance, let 
us apply the formalism of the calculus of variations. (Elsewhere (Johannes, 2001), I have derived 
similar results in a Hamiltonian formalism, by use of the Pontryagin maximum principle.) We 
shall derive purely necessary conditions and assume that at least one solution O& exists. Further, 
we shall assume, without rigorous argument, that at points of finite dividend or interest payment, 
jumps occur in the optimal path n@ (t) in U, and that, in consequence, the transversality conditions 
become redundant, thereby justifjring the assignment of initial c (tA) , p (tA) , p-l (tA) as given 
empirical parameters. 

An individual consumer maximizes utility flows: 

subject to the budget constraint 

dn” 
pKdth=dKnnh-p-,c+wl, 

(where we adopt the summation convention that there is an implied summation over 
variables appearing as both covariant and contravariant indices in a single term, for example, 
P,, n + - C, C, prccl nKp, and provisionally suppressing index ,u) through choice of the 
(1 + K) controls i (7) , b (T), where we regard c as a state variable and 6 z dc/dt as a 
control variable; and subject also to the initial condition n (tA) = nA; and the bounds 
c (t) 2 0 and n (t) < n (t) < ?i (t), where short selling is limited by the creditworthiness 
constraints. To ensure an interior solution c > 0, we make the traditional assumptions: 
dU/dc > 0; d2U/dc2 < 0; li+idU/dc = 00; lim dU/dc = 0; and further require c (t) to be 

Cd00 

piecewise continuous. 
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The Lagrangian C for the problem may be written 

C = 2(7-,c,n,ri) 

= exp(+‘d#) U(c) 

+exp (-1: Od7-I) X (d.nxh-pK~h-p-lc+wl), 

- 

where the investor maximizes s C dr through unconstrained control variables (and i is an implicit 
control variable). It is convenient to consider also the sub-Lagrangian (or simply “Lagrangian”) L 
in the subspace 

L(T,n,i) =exp(-~~Od#)A(dKnKh-pK$h) 

where implicitly c = c@ its optimized value. 

Without attempting a rigorous treatment, let us note first, that the applicability of the 
classical calculus of variations requires the control space to be either open or equal to all of 
R(l+K)M, the latter requirement being fulfilled here since we assume dc/dt E (-co, +oo) 
and drP/dt E (--00, +oo), consistent with the admissibility of piecewise continuous c (t) and 
potential finite trading of n. Second, that the class of admissible solutions n@ (t) is the absolutely 
continuous functions. 

At points of discontinuity in d,, the calculus of variations is not applicable, and 
consequently Oza on [tA, tn] (where we let ta -+ 00) is decomposed into an endless sequence 
of finite arcs: [i&, tp] , [tp, t?] , . . . , to each of which the formalism can be applied; and limits in 
section 2 should be so understood. (It is possible to apply a finite form of the Euler-Lagrange 
equations so as to show that, for instance, price jumps downward by the amount of the dividend in 
the absence of tax; it was Lagrange himself who developed such a form. But the state variables 
are not absolutely continuous across the discontinuity.) Here, d, may denote, for instance, a Dirac 
delta improper function, but for simplicity of argument, we keep the functional form implicit. At 
points of finite cashflow, given that c (t) is piecewise continuous, n@ necessarily undergoes a finite 
jump (almost always), since finite savings must be allocated to the securities market (ignoring 
singular cases, such as savings across investors proportionate to rP being reinvested so that pK 
remains absolutely continous). We see also that at points where c is not absolutely continuous 
there will be breaks in Oza. Similar arguments could be made in respect of finite wage payments, 
finite issuance of securities, and finite stochastic shocks. 

Since finite trading in the market by each investor may lead to any portfolio of equal 
value, that value being determined by the evolution of p, the transversality conditions at the 
endpoint of each arc become redundant. That is, a succession of transversality conditions 
extending to tn ---) 00 does not constrain the optimal path by backward induction of investor 
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expectations, because of the possibility of finite trading; and investors need exercise only 
short-run rational expectations, as we have assumed. Consequently, along with n (tA), we regard 
p (tA) , p-1 (tA) , c (tA) as given empirical parameters. 

On a finite arc, the Euler-Lagrange equations give: 

dU - - xp-1 = 0 dc 
dpK. 
dt= 4, + Qp, - ;$pK (K = 1,. . . ) K) . 

Since the money market deposit is the numeraire-embodying the economic assumption that 
money is traded in a single market at a single price by all investors (that is, each investor trades 
money with every other investor, either directly or indirectly)--A-2 imply 

X = hexp (/)-p) dr); 

&n 
dt= -4 + PP, (K = 1,. . . ) K), 

where Xc > 0 (by A-l) is constant, and p (t) is independent of the unobservable 0; note that there 
is a purely formal similarity to stochastic discount factors and transformation to the risk-neutral 
basis. (Here, it seems possible that p, = 0 in a finite time when d, > p. We shall find, however, 
that in the risky equilibrium of section 4, the probability of occurrence of assets bearing zero price 
becomes vanishingly small. That is, the macroeconomic equilibrium ensures that the probability 
of occurrence of dynamically inefficient microeconomic states is zero.) 

From A- 1 we can infer the usual Keynes-Ramsey type rule: 

d2U/dc2 dc 
dU/dc dt = 

d log (dU/dc) = (e _ p) 
dt , 

where we adopt what seems to be the customary assumption that p-1 is regarded as a constant. 
Underlying this assumption is the notion that c considered as a marginal asset offers a zero current 
return (since by A-l on 0 zo the utility benefit is simultaneously offset by the financial cost at the 
margin), and zero total return (since the asset is extinguished after consumption); and implicit 
is the economic supposition that consumers hold c for the purpose of consumption only, not for 
trading, and there are no commodity markets for consumption goods. 

Consequently, 

c@ (t) = [dU/dc]-’ 

where c (ta) is assumed given, and [dU/dc]-’ ’ IS the inverse mapping of dU/dc (for any cardinal 
representation); and with determined c@, we can work in the subspace ( > r, n, i of L. 
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The Weierstrass condition gives: 

where p@ denotes (l/h) OL (T, n@, tie) /aA and again @ denotes value on the optimal 
path Ozo. It follows that for optimality (pz - plE) dn”/dt is maximized with respect to the _ 
dn”/dt E (-co, +m), and hence 

p:-p,=o (/G=l,... ,K), 

that is, shadow price equals market price. Then dn”@/dt is indeterminate, that is, can take any of 
its admissible values (-00, +oo). Strictly speaking, in this equation, as in others, the condition 
only holds almost everywhere; the point of principle is that with an optimality criterion framed in 
terms of an integral (of utility flows), one cannot meaningfully distinguish solutions more finely 
than almost everywhere. 

The budget constraint is recovered from the equation for the Lagrange multiplier: 

dn” 
d,n”h-p,- dt h - pm1 c@ + wl = o. 

For financial assets, the Legendre conditions are always weakly fulfilled, since the 
matrix 1. 132L/&k &iz 1 is everywhere singular, corresponding to a semi-definite quadratic form. 
The economic interpretation is that financial assets are characterized by a determinate-price 
equilibrium, with dn@/dt nowhere determinate; consequently, in 3, price eigenstates (states of 
definite p) are equivalent to value eigenstates (states of definite momentary rate of return), as are 
their distributions. 

Aggregating over investors in 

L=&exp(-l:pdT) (dK,nKPh-pKPzh). 

The aggregate budget constraint for investors implies that the time path of 

(pKP drP/dt - d,, nKcL) 

is determined by (w,P - p-l, cp) (given ~3‘ (tA)), with the composition of aggregate firms’ 
cashflow undetermined as between higher securities’ issuance and lower securities’ payouts (or 
vice versa). If we assigned an arbitrary rule for the mode of firms’ corporate finance, for instance, 
that securities’ payouts were zero (say, no bonds issued and dividend payments effected by 
share repurchase), or at the opposite pole that securities’ net issuance was zero, then the path of 
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dn@/dt and n@ (t) could be fixed. But with such constraints, optimal investor behaviour implies 
that p (t) - p@ (t) would be affected. That is, the price process p@ (t) would be disturbed by 
exogenous fixing of dn@/dt and n@ (t). Conversely, postulating a price process p@ (t) implies 
the processes dn@/dt and n@ (t), which cannot be assigned independently (and similar remarks 
apply to a postulated process for dividends). Neither price nor quantity process is assigned in the 
present theory: dn@/dt and n@ (t) remain indeterminate for any given microfinancial state; and 
p (t) evolves with d, to give a total return p, which is assumed to exist a.e.. We shall see (section 
2), however, that the expected aggregate quantities of stocks and bonds and their distribution by 
price are determinate in a macrofinancial state, characterized by known macrofinancial parameters 
at a point in time. 

Transforming L to present value prices and returns, denoted by a ‘, and setting Xc = 1: 

drP L’ = 4, nnp h - p& x h 

and n’ = n. In considering transformations back and forth between current and present value 
prices at specified discount rates as allowable, it is implicit that L’ continues to satisfl the 
Euler-Lagrange equations, in general form 

aL’ o --= 
&P~ Ic= l,... , K; p = 1,. . . , M, 

as can be verified explicitly. Underlying that presumption is the assumption that L is an 
invariant, that is, a scalar in respect of its independent variables, with unchanging value 
under a transformation of the coordinate system of those variables. For, it is known that the 
Euler-Lagrange equations are equivalent to Hamilton’s principle 6 s L dt = 0 (for variations from 
the optimal path with fixed endpoints), and so invariance of L is equivalent to covariance of (A-3). 
Mathematically, L is scalar, and (A-3) define the components of a covariant vector. 

In fact, the Euler-Lagrange equations (and all the necessary conditions) are covariant 
under any transformation of the kind (Cesari, 1983, sect. 2.4): 

n ‘W = n’+ (t, n) l-c= l,... , K; p = 1, . . . , IP& 

corresponding to, in general, not only a different coordinate framework for financial assets, 
but also a different degree of rental (borrowing or lending) of financial assets. The economic 
interpretation is that not only is the choice of coordinate framework for employed assets a 
matter of indifference, but so also is the distinction between ownership and rental for employed 
assets-itself a choice of coordinate framework-since the difference between p and d,, is 
accounted for by capital gains. 

A consequence of (A-3) is that 

d L, 8L' . n,.~ 
> 

8~' 
z --n 

an"p 
-x=0 

(with implied summation) holds as an identity, the DuBois-Reyrnond condition (Cesari, 1983, 
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sect. 2.2). For that reason we seek a coordinate transformation to an L” for which ClL”/at = 0. 
We know that ap/dt = 0 for p = p (qe, lc; p-1, c), and we are at liberty to transform L’ in 
accordance with (A-4). Consider, therefore, 

n”6p=exp(f(p-$) d7-) rP ~=l,..., K;p=l,..., Ad, 

where 4+/p,,, = dL,/pLP, implying 

n ‘W = exp (-1: (p- 2) dr) iNnP 

-(p-z)exp(-lI(p--2) d7) n”lEp 

(tc= l,.. . , K; ,Q = 1,. . . , M), and 

since p,, must transform according to the rules 

and d,, = (l/h) aL/&z VJ transforms in the same way. 

Then L’ is transformed to 
dn”W 

L~~ = d$ n”+ h _ p”’ dt h + 

dn”W 
= p p& n/‘&p h - piP 7 h, 

p&nNnPh 

from which, by the DuBois-Reymond condition, it follows that 

or equivalently 

$ (p pzP n”+ h) = 0, 

dE;l’ - = 0; 
dt 

E;I’ = p pzP nNup h = p exp (--l)dr) pKpnlEClh. 

Thus, we see that the inclusion of capital gains (the transformation from current to total return) 
can be viewed as a time-dependent coordinate transformation; and the present value total return 
on the aggregate financial asset portfolio constitutes a time-invariant quantity. 



- 35 - 

References 

Bleistein, Norman and Richard A. Handelsman (1975). Asymptotic Expansions of Integrals. New 
York: Holt, Rinehart and Winston. (Repub. 1986. New York: Dover Publications.) 

Cesari, Lamberto (1983). Optimization-Theory and Applications. New York: Springer-Verlag. 

- 

Doob, J. L. (1942). “The Brownian Movement and Stochastic Equations”, Annals of 
Mathematics, 43,351-369. 

Jackwerth, Jens Carsten and Mark Rubinstein (1996). “Recovering Probability Distributions from 
Option Prices”, Journal of Finance, 51, 1611-1631. 

Feller, W illiam (1968). An Introduction to Probability Theory and Its Applications. Volume I. 
New York: John Wiley & Sons. 

Johannes, Ronald L. (2001). “The Coexistence of Money with Bonds in Macroeconomic 
Equilibrium”, mimeo. 

Rim, Jongwoo (1999). “Conditioning the transition matrix”, Risk, October 1999,37-40. 


