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Dirichlet process prior. This provides considerable freedom in the specification of prior 
information about demand and it permits the accommodation of fixed order costs. As 
information on the demand distribution accumulates, optimal history-dependent (s,S) rules 
are shown to converge to an (s,S) rule that is optimal when the underlying demand 
distribution is known. 
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1. INTRODUCTION 

Since its introduction by Arrow, Harris and Marschak [ 195 11, the (s, S) inventory 

model has been used in a variety of ways. It has been used to characterize the dynamics of 
inventory adjustment by firms (see the survey by Porteus [ 1990]), understand the demand for 
money by different agents, analyze price-setting behavior when there are fixed costs 
associated with a decision to change prices, and examine the macroeconomic implications of 
inventory policies. 

Inventory adjustment models generally assume that agents (hereafter, firms) know the 
distribution of demand. It seems more plausible that firms do not know the true distribution 
of demand, but that they learn about it as they accumulate information over time. The 
purpose of this paper is to develop more fully the theory of the (s, S) inventory model under 

learning. 

Previous research on this problem has focussed on a parametric Bayesian approach 
that assumes the true demand distribution belongs to some parametric family characterized 
by a finite number of unknown parameters (Scarf [1959a, 19601, Karlin [ 19601, Iglehart 
[1964], Azoury and Miller [1984], Azoury [1985], and Lovejoy [1990]; see also Dvoretzky, 
Kiefer and Wolfowitz [ 19521). The firm’s information about demand is specified by some 
conjugate prior on the unknown parameters and updated via Bayes’ Rule. Typically, the 
choice of a conjugate family of distributions places restrictions on the prior information that 
can be accommodated and the true distributions of demand that can be allowed. For example, 
it is difficult under standard conjugate family specifications to allow for bi-modal priors or 
bi-modal true demand distributions. Another key assumption underlying parametric Bayesian 
models in the inventory literature is that purchasing costs are convex. This rules out the 
possibility of fixed order costs and it implies optimal policies are degenerate in the sense that 
s=S. 

This paper adopts a non-parametric Bayesian approach that provides greater 
flexibility in modeling prior information about demand, allows for a larger set of true (but 
unknown) demand distributions, and accommodates fixed order costs that make the cost 
function non-convex. The firm’s information about the demand distribution is characterized 
by a Dirichlet process prior on the space of distributions (Ferguson [ 19731). Given a Dirichlet 
process prior, any distribution whose support is included in the support of the measure 
characterizing the Dirichlet process prior can be approximated as a posterior. Our approach 
leads to results on time-dependent (s, S) policies under learning that incorporate fixed order 

costs and are analogous to those obtained when the distribution is known. 

Section II introduces the Dirichlet process and discusses how it is used to model prior 
beliefs and how those beliefs are updated as the firm learns about demand. Section III 
develops a dynamic programming formulation of the problem. The state space is defined on 
the beginning-of-period inventory level and the measure characterizing the firm’s beliefs 
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about the demand distribution. For both the finite and infinite planning horizon formulations 
of the model, a historydependent (s, S) policy is optimal at each stage. We prove that as 

information on the demand distribution accumulates, these history-dependent (s, S) rules 

converge to the optimal (s, S) rule for the case where the underlying demand distribution is 

hOWlI 

Comparative dynamic results for the case where there is no fixed ordering cost are 
given in Section IV. If the expected demand distributions under two Dirichlet process priors 
are ordered by first-order stochastic dominance, then the critical stock levels are ordered for 
any common history of demand observations. This extends results obtained by Karlin [ 19601 
and Scarf [1959a]. We also show that if in any period the current demand realization is less 
than (greater than) the minimum (maximum) of those observed to date, the optimal order-to- 
level S decreases or remains the same (increases or remains the same) for the following 
period. With no fmed ordering cost the time-dependent optimal policy is degenerate in the 
sense that s = S in each period. Even so, if the current demand realization is sufficiently 
small it is possible that the optimal policy under learning is to refrain from ordering. 

Section V offers some concluding remarks. Proofs of all results are given in the 
Appendix. 

II. THE DIFWHLET PROCESS 

The firm’s initial beliefs about the true demand distribution are characterized by a 
prior distribution over the space of probability measures on (Q’E) where Sz is taken to be a 

compact subset of %+ , the nonnegative real numbers and ‘B is the o-algebra of Bore1 subsets 
of S2. The prior distributions used in this paper are the Dirichlet process priors (Ferguson 
[ 19731). This nonparametric approach to Bayesian learning has received relatively little 
attention in the literature on dynamic programming models under uncertainty.* 

Formally, let s(n) be the space of probability measures on (Q’B) . The true, but 
unknown, demand distribution is denoted by FL and the support of FL is assumed to be a 
compact subset of 0. Let B be the o-algebra of Bore1 subsets of s’(Q) with respect to the 
topology of weak convergence and let F(f(sZ)) denote the space of probability measures on 

* Rothschild’s [ 19741 early work on optimal search for the lowest price from an unknown, 
discrete price distribution utilizes the Dirichlet distribution (see also Talman [ 19921). The 
more general problem of optimal search under a Dirichlet process is analyzed by Christensen 
[ 19861 and Bikhchandani and Sharma [ 19901. Clayton and Berry [ 19851 develop a 
nonparametric Bayesian analysis of the two-armed bandit problem using the Dirichlet 
process. 
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(F(R), 3). The firm’s beliefs about the distribution of demand are represented by a measure 
8 E F(F(S2)). Let v be a random probability distribution on R chosen according to 8 so 

that both ECU v(dw) and v(B) for B E C5 are random variables. Let 8[.] denote the 

expectation operation with respect to 8. Then Z’[ ] v is a probability measure on (R, B) . If F 

is the distribution function associated with v , F(w) = v ((-qw]) , then the distribution 

function associated with 8[ v] is denoted by 8 [F] . Let w, , . . ., w, denote a random sample 

of size n chosen according to v . The information contained in o, , . . . , w, is used to update the 

firm’s beliefs about the true demand distribution. 

Definition (Fermson 119731). Let a(.) b e a zni e non-null measure on (Q 23) and let v be f t 

a random process indexed by elements of l3. v is a Dirichlet process with parameter a, 
written v E 9 (a), or equivalently F E XJ (a), yf I or every finite measurable partition 

( I ,,..., I,)ofS2, therandom vector (~(1,) ,..., ~(1~)) h as a Dirichlet distribution with 

parameter (a(I,),...,a(l,)). 

It is easy to see that if g is any measurable function on (C&B) then 

g( [g(m) W4) = I&) dJ=(N. 

Ferguson [ 1973, 19741 discusses three properties of the Dirichlet process. First, under 
the topology of weak convergence the support of B(a) is the set of all probability 

distributions whose support is contained in the support of a (Ferguson [ 1973, p. 2161). This 
means that the support of any firm’s beliefs can be approximated arbitrarily close by the 
Dirichlet process. It does not imply the stronger propey that the beliefs of any firm can be 
approximated arbitrarily close by the Dirichlet process. Hence, while the Dirichlet process is 
rather flexible as a model of the underlying demand distribution, it is less so as a model of 
beliefs. The second useful property noted by Ferguson is that for any non-negative 

measurable function g, if jg(w) d ( ) a w c 00 then Ig (w) dF(w) < 00 almost surely 

(Ferguson [1973, Theorem 31). This establishes a strong connection between properties of the 

3 We thank Thomas Ferguson for the following simple counter-example. Let n = (0, If and 

define /3, = Pr (o = 0) and 0, = Pr (w = 1) = 1 - 0, , The Dirichlet processes are then Beta 

distributions on the space of Binomial distributionswith parameter 6’, , and the Dirichlet 

process cannot approximate beliefs characterized by an initial prior over 0, of, say, 

Pr(8, =1/4) = (l/2) and Pr(8, = 3/4) = (l/2). 
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measure a of the Dirichlet process and those of the random distribution function F selected 
by the Dirichlet process: if a k” moment of a exists then a k” moment of F exists with 
probability one. Finally, if F E 9(a), then with probability one F is discrete. This has the 

limitation that if the set of possible distribution functions is a subset of the continuous 
distributions, the Dir-i&let process assigns probability zero to the true set. 

Given a Dirichlet process prior, and a sample w, , . . . , w,, from the true (but unknown) 

demand distribution, the posterior distribution on the space of distributions is also a Dirichlet 
process. 

Fact 1 (Ferguson 119731). If F E 9 (a) and if w,, . . . , o,, is a samplefiom F, then the 

posterior distribution of F given w, , . . . , CO,, denoted F/w,, . . ., w, , is 33 
( 1 
a + c Sm, , a 

i 
Dirichletprocess with parameter a + 1 do, where 6, is the measure on (%+,23) that 

i 
assigns mass one to 0. 

The measure characterizing the updated Dirichlet process after n observations is 

givenby a,(w ,,..., w.)=a+tJO, . For brevity we will denote this by a, , it being 
i-l 

understood that a;, depends on the values of realized demands w, , . . . ,w, and not just on the 

number of observations, n , In addition, let a(w) denote a(( - qo]) , Fact 1 implies that 

kn = 8[F(o)lw ,,..., w”] = i=l 

a(Q)+n 

where 8 is the expectation operator with respect to 8, $.,) is the indicator function of the 

set [q,a), an = a(n)/[a(Q)+n], FO (w) = a(w)/a(n), and lYq,,..,O, is the empirical 

distribution function after observing q , . . . , o, . Note that the expected distribution under the 

Dirichlet process is the expectation or mean of the distribution on the space of distributions, 
and hence is an element in the space of distributions; it is a weighted average of the expected 
distribution under the initial Dirichlet prior and the empirical distribution. 

The updating of beliefs prescribed by the Dirichlet process is special in that 
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information provided by an observation is completely local. If a particular w is observed, 
then the expected distribution under the updated Dirichlet process assigns a higher 
probability to any subset of the support of a that contains w and uniformly decreases the 
probability of all subsets that do not contain w (see also Blackwell and MacQueen (1973)). 

a (a) can be interpreted as a measure of confidence in the prior. If a( Cl) is large 

relative to the sample size n , then greater weight or confidence is placed on the prior and the 
firm’s beliefs respond more slowly to new information about demand. However, as the firm 
observes demand (and n becomes large) the expected distribution under the updated 
Dirichlet process becomes closer to the empirical distribution. More specifically, as n + co 
the expected distribution places greater weight on the empirical distribution lYa?,,,,,an and, by 

the Glivenko-Cantelli theorem, the expected distribution converges uniformly almost surely 
to the true demand distribution (Ferguson [ 1973, p. 223]).4 As a consequence, the Dirichlet 
process provides a consistent estimator of the true demand distribution (e.g., Fabius [ 1964, 
Theorem 2.21). 

It is worthwhile to contrast Bayesian learning under the Dirichlet process with 
Bayesian updating in conjugate families characterized by finite-dimensional parameters. In 
the latter, a single observation provides information about the relative probabilities of other 
possible outcomes so that observing a high outcome typically implies that other high 
outcomes are also more likely. The Dirichlet process does not smooth beliefs in this manner, 
but leaves the relative probabilities of unobserved outcomes unchanged. In this regard the 
Dirichlet approach is likely to be most useful when observations occur frequently, or when 
the absence of smoothing is of minor concern when compared to the approximation errors 
that may results from the use of a fmite-parameter conjugate family. Further, for finite 
parameter models, the true distribution belongs to a specific parametric class and the agent’s 
beliefs are a member of the conjugate family for that class (Degroot (1970)). In contrast, the 
nonparametric nature of the Dirichlet process provides a consistent model of learning about 
any demand distribution whose support is a subset of the support of a. This is particularly 
useful when, a priori, very little is known about the true distribution. 

III. OPT~MALINVENTORYPOLICIESUNDERLEARNING 

In the single commodity inventory control problem a firm must decide each period 
whether to order additional inventory, and if so, how much. In doing so the firm faces a 
tradeoff between the costs of holding inventory (if the inventory level is too high) and the 
costs of not being able to satisfy consumer demand (if the inventory level is too low). Each 
order for additional inventory entails a variable cost depending on the quantity ordered and a 
fixed cost which is independent of the order size. The objective of the firm is to minimize the 

4 This assumes that demand is accurately observed each period. As Lovejoy [ 19931 notes, 
this may not occur if demand is not backlogged and lost sales go unobserved. 
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expected discounted sum of all of these costs over time. In the standard formulation, the per 
unit cost of holding inventory, h , and the per unit penalty cost associated with unmet 
demand, p , are assumed to be linear and are based on the end of period inventory level. The 
fixed order cost is denoted by K and the per-unit order cost by c , where it is assumed that 
c < p . The ordering cost function C is given by 

C(u) = 
{ 

K+c*u if u>o 
o 

if u=o. 

All cost parameters are assumed to be non-negative and the discount factor /? 
satisfies 0 < j? < 1. The presence of a strictly positive fixed ordering cost makes the ordering 
cost function non-convex. It is assumed that excess demand is backlogged and there is no lag 
between ordering and delivery. The standard formulation assumes that the demand for the 
good in each period is random with a known distribution. In this paper we assume that the 
demand distribution is not known and that the prior beliefs of the firm on the space of 
demand distributions can be characterized by the Dirichlet process. 

Let the initial inventory stock be given by x and let u denote the order quantity. 
Having observed n previous demand realizations, the expected holding and shortage cost for 
a one-period planning horizon is given by 

b(fL( x+u,u) dF(w)] wl,...,w,, } = ~L(x+u,w)d~[F(w))w,,...,q} = jL(x+u,o)di”(w) 

where L(x+u,w) = h.Mux[x+u-o,O] + p.Mzx[o-(x+u),O] and fin (w)is the 

expectation of the demand distribution under a,, the updated Dirichlet measure given a 

history of n demand realizations. Let V7 (x,a, ) be the minimum expected sum of 

discounted costs with T-periods to go until the end of the planning horizon when x is the 
current inventory level, an is the measure characterizing the firm’s beliefs about the demand 

distribution, and an optimal ordering policy is followed in the future. Standard dynamic 
programming arguments (e.g., Schal[1975]) imply that there exists an optimal policy that 
satisfies the following functional equation for T = 1,2,. . . ,oo : 

&(x,a,)= i;f [C(u)+ j{L(x+u,w)+B &(x+u-wq +fi@)} kn(W)] 

where V, = 0 . Furthermore, the function V, is lower-semicontinuous. 

Define the post-order inventory level by z = x + u . In characterizing the optimal 
solution it is useful to define the cost functions 
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G, (z,a,) = c-z + jL(z,w)kn (0) (3.1) 

GT (z,q) = c-z + ~(L(z,w)+B &&-wan +&)I @ (0) (3.2) 

Note that G, is convex in z and lim,+ G, (z, a,) = 00 . Let S, (an) minimize G, (~,a,) in 

z and let s, (a,, ) be the smallest value of z such that G, (z, a,) = K + G, (S, (a,), a”) . 

Using arguments developed by Scarf [196Ob], the following facts can be established: 

0) GT (z,a,) is K-convex in z ,5 

(ii) lim,+ GT (z, a, ) = 00 , 

(iii) VT ( , n ) K x a is -convex and continuous in x for T = 1,2,. . .,a, 

(iv) There exist scalars ( sT (a, ) , S, (a, )) such that Sr (an ) minimizes Gr (z, an ) in z, 

and sT (a,) is the smallest value of z for which Gr (z,an) = K + Gr (S, (a, ) ,a,). 

Define ur (x,a;, ) to be the optimal order quantity when the current inventory level is 

x and beliefs about the demand distribution are characterized by a, . Given (i)-(iv), the 

classic arguments of Scarf [ 196Ob] and Iglehart [ 19631 can be used to show that the optimal 
inventory policy is an (s, S) inventory rule that varies as expectations change in response to 

the observed history of demand observations. 

LEMMA 3.1. The optimal inventory policy is 

u,(wJ = 
i 

SAaJ-x if X<s,@,) 
0 if x 2 s,(a,) 

for T=l,2 ,..., 00. 

One important issue that arises is how does the optimal stocking rule behave as the 
firm accumulates information about the true demand distribution. Do optimal policies 
converge as the number of demand observations increases, and if so, what are the limit 
policies? The answers to these questions are complicated by the fact that beliefs about 
demand enter the firm’s optimization problem in two ways. First, the firm’s expectations 
over future discounted costs are determined by current beliefs. Second, beliefs are a state 

’ A real valued function f(s) is K -convex (K 2 0) if for all x E !R , y 2 0 , and z > 0 we 

have K+f(x+y) 2 (Y/z>[.I+)-f(-=-z)]. 
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variable in the firm’s dynamic programmin g problem.6 We analyze convergence by first 
proving that the solution to the firm’s dynamic optimization yields an equicontinuous family 
of value functions. This then enables us to develop the main result of this section which 
characterizes the limiting behavior of optimal inventory policies under learning. 

Consider the family of T-period planning horizon value functions 

{~~(w,),n=L...), where n is the number of previously observed demands. 

LEMMA 3.2. The family of value functions (VT (x,a” ), n = 1,. . .) is equicontinuous at x for 

allfinite T. 

Using Lemma 3.2 we now prove that as the number of demand observations 
increases, the history dependent optimal inventory policies under learning converge to 
policies that are optimal when the true demand distribution is known. 

THEOREM 3.3. For all T = 1,2,. . .,oo 

(i) lim,, &(~,a,) = V;(x) as. 

for all x in anyfinite interval, where V: is the valuefunction for the inventory problem with 
known demand distribution, F’ ; and 

(ii) for all E > 0 there exists an N (T, C) such that for all n > N (T, E) we have 

o I C(u,(x,a,))+ I{L(x+u,(x,a,),w)+p~~~-,(x+u,(x,a,)-o)}dF’-V;(x) < E. 

Further, zf lim,,, u7 (x, an ) exists a.s., then 

h,,, (ST (a,)& (a,)) = (SX) aas-, 

where (sl , Si ) are optimal for the inventory problem with known demand distribution, F’ 

6 The latter consideration precludes use of the Portmanteau theorem (Billingsley [ 1968, 
Theorem 2.11) to analyze the convergence of policies. Further, since the convergence of 
beliefs is weaker than setwise convergence, the convergence result of Royden [ 1968, 
Proposition 171 does not apply. Finally, the problem satisfies neither the joint continuity nor 
the monotonicity properties required by Dutta, Majumdar and Sundaram [ 19941. 
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The first part of Theorem 3.3 states that once firms observe a sufficient number of 
demand realizations, the value of optimal policies under learning will be close to the optimal 
value when the true demand distribution is known.’ The second part of the theorem gives a 
related result on the value of following up in the problem where the demand distribution is 
known. We are not able to make a stronger statement regarding the convergence of the 
optimal policies themselves because it has not been shown that such policies are unique. 
Theorem 3.3 is particularly relevant for situations where information accumulates rapidly, as 
is the case in many retail and wholesale operations where inventory levels are monitored on a 
daily or weekly basis. With the advent of computer bar-code technology there is the potential 
for very rapid updating of information since inventory levels can be monitored almost 
continuously. 

IV. COMPARATIVE DYNAMICS 

In this Section we assume that there is no fixed ordering cost, i.e., K = 0. We prove 
two results, The first compares optimal inventory policies under beliefs represented by two 

Dirichlet processes, 9(a’) and D( a’) with a’ (a) = a2 (!A). The second result shows that 

if demand in any period is less than the minimum of past demand realizations, the optimal 
desired inventory level decreases. 

When it exists, let V; denote the derivative of VT with respect to x . For any two 

Dirichlet measures, a’ and a’, let 6’ (w) = [a’ (w)/a’ (a)] and P’ (0) = [a’ (w)/a’ (a)] 

be the expected distributions before any observations are taken. The following lemma leads 
to the main result. 

LEMMA 4.1. Assume K = 0 and consider two Dirichlet measures a’ and a’, such that 
a’(Q)=a’(ZZ). If e’f t- d zrs or er stochastically dominates e’ then Vr’ (x,a: ) I V,! (x, ai ) . 

(If the derivative is not well-defined then the inequality holds for the right hand and lefi hand 
derivatives.) 

The main results of this section are stated below. 

THEOREM 4.2. Assume K = 0. Consider two Dirichlet measures a’ and a2, such that 
a’(Q)=a’(a). F or simplicity assume that a’ and a2 are continuous with continuous first 

’ While similar, Boylan’s [ 19691 stability result for solutions to the optimal inventory 
equation does not apply under (Bayesian) learning. 
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derivatives.8 If 6’ (w) f t trs -or d er stochastically dominates 6’ (0) , then 

&(a:) 2 &(a:) forall n,T an d any common history of demand realizations. 

Theorem 4.2 implies that if the expected distribution under a’ first order 
stochastically dominates the expected distribution under a2 then the optimal inventory level 

under the updated Dirichlet process 9 (a: ) is always larger than that under the updated 

Dirichlet process X)( ai ) f or any common history of demand realizations. This result 

complements those obtained by Karlin [ 1960, Theorems 2 and 2’1 for the case of known, but 
time-varying, demand distributions. 

THEOREM 4.3. If K = 0 then for all n and T the optimal inventory levels satisfy 

S, (a,, ) 2 S, (an + d05hfinID, ,,, w ]). Furthermore, if S, (a, ) > S, (a, + S,=, ) then there 9 IfI 
exists a critical demand level w* such that if 0 c a~,,+~ _< w* , the optimal policy is not to 
order additional inventory immediately after observing a~,,+~. 

The theorem says that a historically low demand realization leads to a pessimistic 
reassessment of the underlying true demand distribution and a downward adjustment in the 
optimal inventory level. This downward adjustment may be such that no additional inventory 
is desired, even after a positive demand realization. This is contrary to the behavior of 
optimal inventory policies with a known demand distribution and no fixed costs. Under the 
latter, if the inventory is at its desired level then any positive demand leads to a restocking of 
inventory to its desired level. Scarf [ 1959, Theorem 31 proves a related result in a model 
where demand has a density in the exponential class. 

V. CONCLUDINGREMARKS 

This paper analyzes the stochastic inventory control problem when demand is 
identically and independently distributed according to a distribution that is not known to the 
firm. In principle, it should be possible to extend the analysis to the case where the demand 
distribution is characterized by a finite Markov chain with stationary, but unknown, transition 
probabilities. In addition, with recent and continuing gains in computing power, it is 
becoming increasingly possible to calculate optimal inventory rules for models that 
incorporate non-parametric learning. Further progress could be made if results on the 
reduction of state space dimensionality, similar to those of Scarf [1960a] and Azoury [ 19851, 
are obtained for non-parametric Bayesian inventory models. If this proves difficult or 
impossible in these models, it would be of interest to extend Lovejoy [1993] and develop 
bounds on the loss from using non-optimal, but simple and readily implementable policies. 

* These continuity assumptions simplify the proof but are not essential to the result. 
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VI. APPENDIX: PROOFS 

Proof.of Lemma 3.1. The proof follows the classic arguments of Scarf [ 196Ob] and Iglehart 
[1963]. 

Proof of Lemma 3.2. The proof proceeds by induction. Assume (V,-, (x, a, ) , n = 1,. . .] is an 

equicontinuous family at x. Since {L (z, w) , w E R) at z and (VT-, (x, a” ), n = 1,. . .} at x are 

equicontinuous families, it is straightforward to show that (Gr (z,a” ), n = 1,. . .) is also 

equicontinuous at z, where GT (n) is defined in (3.2). 

For the sake of brevity let (s; , S,” ) denote the optimal policy when beliefs are 

characterized by a, and there are T periods remaining, with the dependence on a,, being 

understood. Let z and z’ be the optimal orders from x and x’ , respectively. It follows that 

x If x> s; 
and z’ = 

Xl 
z= 

lj- XI> s; 

s; if xss; s; if x’s$. 

Without loss of generality assume x’ I x . We want to show that for any E > 0, there exists a 

SE such that 1 x-x’l<6, implies 1 VT(x,m)-V,(x’,.)l < E . Three cases need to be considered. 

Casel: z=z’=S;I. 

In this case, 1 V,(x,.)-VT(x’,.)I = I-c.x+GT(S;,an)-[c.x+GT(S;,a,)]l = c(x-x’). 

Given E choose 8, = (g/c) . Equicontinuity of the family (VT (x,a, ), n = 1,. . .} follows 

directly. 

Case 2: z = x, z’ = S; . 

From x’ I sg I ST” it follows that Iz - z’l = Ix - Sy 1 I Ix - ~91 I Ix - x’l . Note that 

V,(x,q) = 
K-c.x+G,(Sf,a,) if x<sf 

-c.x + GT (x,q) If xzs;. 

This gives 
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) VT(x;)-VT(.d;)I = I-c.x+G,(x;)-[K- cex~+~T(s;,j( = I-c(x-~f)+~T(~,~)-~T(~;,~)I 

The last equality follows from the fact that GT (sl , *) = K + Gr (S; ,.) by the K-convexity of 

G and the definitions of s; and SJ . Thus, 

1 r~T(x,.)-vT(x’,.)I = l-c(x-~~)+~,(~,+GT(~:,jl 5 -c(x-x') + ) G,(G)-G,($,-)I 

By the equicontinuity of the family (Gr (x, a), n = 1,. . .} , there exists a SE,2 > 0 such that 

Ix - x’l < S+ implies 1 GT (x,.)-G, (x’, .)( < c/2 . Then, 1x-s; 1 I Ix - x’l < 6+ implies 

IG,(x,+G,(~;,-)I < 42. 

Define 6& = .5/2c . From this we get c( x - x’) < &/2 whenever Ix - x’l < S& . Choose 

6, = Min( dZ,? ,a&). For this 6, it can be seen that Ix- x’l < S, implies 

(VT(X,pgX’,.)I < E. 

Case 3: z = x, z’ =x’. 

In this case, Iz - z’l = Ix --‘I and 

The equicontinuity of the family (V, ( x, a,, ) , n = 1,. . ,) at x follows directly from the fact that 

{G,(x,a,),~=L...) is an equicontinuous family at x. The proof is completed by noting that 

{V,(x,a,)=O,n=l,... f is an equicontinuous family at x. // 

Proof of Theorem 3.3. (i) First consider the case of finite T . Let x be in some finite interval 

[ I 0, X . Consider the sequence (V’r (~,a,,)):~, . Since Sz is compact, V, (x,a, ) is uniformly 

bounded on [0,X] ( i.e., there exists an M independent of n such that VT (~,a, ) I M ). The 

Ascoli-Arzela theorem (Royden [ 19881, Theorem 7.40) implies that there exists a 

subsequence a,, such that V, (x, a,, ) converges to. a continuous function VT (x, F’ ) where 

the convergence is uniform on each compact subset of [ 0, Y] . Since ank converges to F’ for 

all possible subsequences, nk can be taken to be the entire sequence, n . It remains to show 
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that V,(x,F’)=V,(x). W e use the following preliminary lemma adapted from Hinderer 

[1970, Lemma 3.31. 

Lemma A.l. vu(y) and v(y) are continuous functions bounded below then 

$fU(Y) -iyfv(y) 1 5 sup) U(Y)-V(Y) I * 
Y 

The proof of theorem 3.3 proceeds by induction. Suppose the theorem holds for T - 1 
and consider lim,,, VT(x,a;,). ByLemmaA.1, 

h+)-vT(xJ4 s “YP 
c(u)+ jp(x+u,w)+p v;-, (x+u -CD) dF’(u)] 
-{C(u)+~L(x+u o)+pv- (x+u--0 a +6 )& ( , T 1 9 n m “W )]) 

I s$p(z,w)+P v;-, (z-ujp’(u)- Jp(w)+P v;-, (-$p&q 
+SUPQII[V;_,(z-o)-V;_,(z-w,a,+6,)]~”(W)I 

5 s,,~~~:,u)+~~~~.cz-u)]~*(u)-~~~z,u)+~~~~~(z-Y)]di(u), 

+ sup sup p 1 Iv;-, (z-w)-v~ml (z-u9a;, +am)]kj (“)l 
OSjSm L 

(A.2.1) 
where z = x+u. 

Since L(z,w)+/? VT-I ( z -w) is continuous in w and FR converges weakly to F’ , 

we have 

lim,,, [L(z,o)+flv;_l(z-O)]dF”(o) = s[L(z,O)+pv;-,(z-o)]dF*(W) 

where the convergence is uniform on finite intervals. Thus, the lim and sup operators can be 
exchanged (Hinderer [ 1970, remark following Lemma 3.41) to obtain 
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lim n-tm sup 1 I[~(~,~)+~y;_,(z-w)]dF’(w)-I[~(~~~)+Bv;_,(~-~~]~~~~~~ 
.7 

= sup lim,,, 

= of 

1 I[L(w)+/J J$-] (-@qu)- jp(z,o)+P v;&-+R(u) ( 
.I 

(A.2.2) 

Since the cost function with T - 1 periods to go is uniformly bounded for all n and 

J$&-w,cL, 16,) -+ q,( z - w) by the induction hypothesis, the dominated convergence 

theorem implies [VT-, (z -0, a;, + so) Gj (0) -+ IV;-, (z - w) gj (w) . It then follows that 

lim,+, SUP sup fl] s[viej (z-u)-v~el (z-w9afj +6o)]&j (u) 1 

OSjSm z 

= sup sup lim,,, 
OSjSm L 

PI [‘;-I (z-u)-v~m, (z-u9a;, +S,)lkj (O) 1 = O* 

Combining this with (A-2.2) shows that (A.2.1) converges to zero as 11 + 00 which proves 

that lim,,, VT (x,a,) = v; (x). s ince the result holds trivially for T = 0, the induction 

argument is complete and the theorem holds for finite T . 

Now consider the infinite horizon case. Standard arguments imply: 
(1) V, (x, a5, ) and V,l (x) are continuous in x, and 

(2) lim r+o3 Vr (x, CL~ ) = V, (x, a, ) and lim,,, V; (x) = Vz (x) , where the convergence is 

uniform in each case. 

This implies that for all x and E > 0 there exists a c such that 1 V, (x,an ) - V, (~,a,, ) I< E 

and 1 V(x)-K(x)) c E for all T > T, . Combining these two inequalities gives 

1 Y,(x,a,)-V=(x,a,,)-V,‘(x)+Vk(x)I< 2~ forall T>T,. 

Letting n -+ 03 implies lim,,, 1 fc (x)-V- (x,a,)I < 2s) since lim,,, V, (x,a,) = V;(x). 

The proof follows immediately. 

(ii) The proof is similar to the proof of Theorem 3.8 in Stokey, Lucas and Prescott [ 19891. 
Let 

W;(x,u) = C(u) + j(L(x+u,w)+,8V;(x+u-o)}dF’(w), and 

w;(x,u) = C(U) + I(L(x+u,w)+pV,_,(-~+u-w,a,+S,)}d~"(u). 
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Note that V; (x) = Max W; (x, u) and VT (x,a, ) = Mm W’ (x,u) . Part (i) of the theorem 
u u 

implies that Wf (x, u) converges to W; (x, u) where the convergence is uniform on each 

compact subset [ 0, Y] x [ 0, U] . Let u; (x) be the optimal order from x for the inventory 

problem with known demand distribution, F’ . By the principle of optimality, we have 

0 I J$++~c~;,))-~(x) 

5 W;(x,~~(x,a,))-Wi(x,u;(x))+ w;(x,ur(X))-W,“(X,U~(X,an)) 

I 2s~~ 
II 

W;(x,+(x,q))-w;( w+ (w,))1, IW; (wf (+Wm (x4 Cx))) } 

for all x . Since Wq converges to JV; uniformly, it follows that for all E > 0 there exists an 

N(t,&) suchthat 01 W;(x,+(x,a,,))- Y;(x)<& forall n>N(T,,s).// 

Proof of Lemma 4.1. The one period-to-go value function is given by 

y(x,an) = 2: [c.u+j~(x+u,u)$(u)] = in: [G,(x+u,a,)-c-x] 

where the diction G, is defined in (3.1). Under the Dirichlet process, G, can be rewritten as 

G,(z,q) = c.z+& h [ nl(z-u)&(u)+p~I(O-z)dk(u)] 

+(l-R$) h’+$A4C2X[Z-Ui,0] + ~ej$Max[o, -Z,O]] 
[ i-l I 

= c-z+& h [ $(z-u)dk(u)+psp(u-z)&(u)] 

h’i$(z-ui) l(.czq) + P 
r-l 

As noted earlier, G1 is continuous and convex in z. The derivative of G1 with respect to z is 
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This derivative exists except possibly at u, ,. . . , u, and points of discontinuity of the prior; 

however, at these points the left-hand and right-hand derivatives exist and are bounded. (For 
simplicity we assume in the sequel that the prior measure has a density.) 

It is clear that G,‘(z, an ) is increasing in z , and given p > c we have 

lim,+ G1 ( z,an ) = CO. Hence, a minimum of Gl(z,a”) exists. Let Sin be the smallest value 

minirnizing G1 (z, a, ) . The value function and its derivative are given by 

V(w,) = 
--c.x + G, (S,“,a,) 

--C-x + G, (x,a,) 

and 

yl’(x,q) = 
-C 

--c + G,‘(x,a,) 

x < sy 

x 2 qn 

x c S,” 

x 2 s(l 

with the derivative being well-defined except possibly at u, , . . . , u, and S]” . The continuity 

and convexity of G, (x, a, ) imply that J< (x, a, ) is continuous and convex in x . 

Furthermore, y’( x, cr, ) is non-decreasing in x (because if G( (x, a, ) is well-defined then it is 

non-negative for x > S,” by the convexity of G, ). 

The T-period planning horizon value function is defined by 

&(x,a,) = 5: [c.u + j[L( x+u,u)+pVT_,(x+u-w,a~+6,))~~(u)] 

= ~II; [-c.x + GT (x+u,q)] 

where GT (z,a,) is defined in (3.2). Using standard arguments, it can be established that: 

(i) GT (z, a’, ) is continuous and convex in z , (ii) lim,+, Gr (z, an) = CO , (iii) G,’ (z, a, ) is 

increasing in z , and hence that 

VT(wn) = 
--c.x + G, (S;,a,) x < s; 

-c-x + GT (x,a,) x 2 s; 

where S; is the smallest value minimizing G7. (z, a, ) , Next, 
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Vi(x,a”) = -” 
x < s; 

-c+G~(x,a,), x 2 s; 

is well defined except possibly at finite points of discontinuity. Clearly Vi (x,a, ) is non- 

decreasing in x . Finally, V, (x,a, ) is continuous and convex in x . 

It is clear from the expression for V;‘( x, an) that the result is true for T = 1. We now 

assume it is true for T - 1 and show it is true for T . Consider 

G;(x,af) = c-p+(h+p)ki(x)+p JV;-,(x-u,a~+6,)&~(0) 

= c-p+P j[v;-I( x-u,af +S,)+(~+p)l~,,x~} &f(u) 

2 c-p+P j{VL( x - u, 4 + 43 ) + (h + P) l[,,,,} de (u) 

2 c-p+P I(VL ( x-w4 +~~)+(h+P)l~m,,~}~~(u) 

= G;(x,aA) 

where the first inequality follows from the fact that Fi stochastically dominates i;.’ and the 

integrand is decreasing in u . The integrand decreases in o because 
(i) VT)-, (z, .) increases in z, and 

(ii) V7)-, (z, a,Z + 8m) I VT’-, (z, ai + am,) for u < u’ , by the induction assumption and the 

fact that at +S,. stochastically dominates at + 6, for u c u’ . 

The second inequality follows from the induction assumption since ai + 6, stochastically 

dominates af + S, . The critical number S, (ai ) satisfies Gi (x, aA ) = 0 if the derivative 

exists, or it is the smallest u for which the right hand derivative of GT (x, ai ) is greater than 

or equal to zero. In either case, the fact that Gh (x, aA ) I G; (x, a,’ ) enables us to conclude 

that S, (a:) 2 S, (a:) ( since Gi is increasing in its first argument). 

To complete the proof of the lemma, consider the following three possible cases: 

(0 x I S, (ai) which implies V,‘-l (x,ai ) - Y;-, (x,aA ) = -c + c = 0, 

00 ST (an’ ) I x I S, (a:) which implies 

V;-,(x,a,?) - V;-, (x,ai) = -c+Gi(x,af)+c = G.(x,a:) 2 0, 
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(iii) x 2 S, (a:) which implies 

VA, (x,c( ) - VA, (vi ) = Gi(x,ai)-Gi(x,ai) 2 0. 

If the derivative is not well-defined at a point x , then the above inequalities can be 
established for the right hand and left hand derivatives. Hence, the lemma is proved. // 

Proof of Theorem 4.2. The proof follows immediately from Lemma 4.1. // 

Proof of Theorem 4.3. Note that S, (a, ) satisfies Gi (z,a, ) = 0 , or if the derivative is not 

well defined it is the smallest z such that the right hand derivative of GT. (z, an ) is greater 

than or equal to zero. A similar relation characterizes S, ( a, + S,,,,, ,,, a, , 3 ,R 1 . Using 

arguments similar to those in the proof of Lemma 4.1, Gi (z, cr,) I Gi (z, cr, + &UsMinlw, ,,,,,oml) 

because 6,, first-order stochastically dominates en+, 1 u,,, I Min [q, . . . , u,, ] . The result 

follows because Gi (z,.) is non-decreasing in z . 

Remark. Theorems 4.2 and 4.3 are not true when there is a fixed ordering cost. 
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