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Summarv 

The development and use of forward-looking macro models in policymaking institutions 
has proceeded at a pace much slower than predicted in the early 1980s. An important reason is 
that researchers have not had access to robust and efficient solution techniques for solving 
nonlinear forward-looking models. The numerical complexity of solving a forward-looking 
macro model is considerably more onerous than solving a traditional backward-looking, 
reduced-form model of the same size. In many cases, researchers have been forced either to 
linearize their models or to focus their attention on very small models that could be solved easily 
with available technology. This paper discusses the development and implementation of a new 
algorithm based on a Newton-Raphson iterative method. It is used for solving MULTIMOD, 
the IMF’s multicountry model of the world economy. This algorithm is considerably faster and 
much less prone to simlllation failure than traditional algorithms and can also be used to solve 
individual country models of the same size. 
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1. INTRODUCTION 

Advances in applied econometric modeling over the past four decades have been greatly 
facilitated by revolutionary changes in computer hardware and sofhvare. With these advances, 
policy authorities in many countries have come to rely on large-scale macroeconometric models as 
one of the standard sources of information from which they regularly seek guidance in attempting 
to maintain macroeconomic stability. 

The generic characteristics of macroeconometric models have evolved over time in 
parallel with mainstream macroeconomic thinking. As economic theorists and policy makers have 
become increasingly enamored with the assumption that economic agents behave in a rational, 
forward-looking manner, a generation of backward-looking econometric models has been 
increasingly retired in favor of a new generation of models with forward-looking expectations. 
To date, the development of the new generations has been impeded by the numerical complexity 
of solving forward-looking models. This difficulty has been substantially reduced, however, with 
the recent introduction of more powerful solution algorithms. 

The numerical complexity of solving a small scale rational expectations (RE) model is 
equivalent to solving very large scale backward-looking econometric models. In order to reduce 
the size of the problem to manageable proportions, traditional algorithms have been designed to 
break large simultaneous blocks into smaller pieces and then use an iterative procedure to ensure 
consistency across blocks until the full system has converged. 

The traditional Fair-Taylor (F-T 1983) algorithm separated the problem into three types of 
iterations and a Gauss-Seidel iterative procedure was relied upon to solve for each layer of 
iteration. The problems with this approach are well-known; it can be a time consuming process 
and the method may not find a solution even though a well-defined saddle point stable solution 
may exist-see Armstrong et al (1995). In order to achieve a solution with these techniques, 
practitioners have been forced to rely heavily on certain tuning parameters (ordering, convergence 
tolerance limits, damping factors, divergence factors etc.) to help the algorithms achieve 
convergence in a reasonable amount of time. For certain classes of models, this problem has been 
so severe that these models simply could not be relied upon to provide solutions in a production- 
related environment. 

In practice, this has meant that model builders have had to either linear&e their models or 
restrict their attention to issues that could be dealt with more easily with traditional algorithms. 
With the enormous advance in computer technology over the last few years, it is now possible to 
design more robust methods for solving medium-sized nonlinear rational expectations models. 

In this paper, we investigate the efficiency gains of using a Newton-Raphson approach for 
solving MULTIMOD, the IMF’s multicountry model of the world economy. This new approach 
involves stacking the equations-or combining the Type I and Type II iterations in F-T 
algorithm-and then employing a method first proposed by Laffargue (1990), then developed by 
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Boucekkine (1995) and Juillard (1996), to exploit information about the repetitive and sparse 
structure of the full simultaneous problem.2 

In order to provide an estimate of the potential efficiency gains we compare the simulation 
times of the LaEngue-Boucekkine-Juillard (L-B-J) method with those of the F-T algorithm. 
Because solution times depend on the tightness of the tolerance limits these comparisons are made 
with both loose and tight convergence tolerances for the F-T algorithm. The L-B-J and F-T 
techniques are both implemented in TROLL and are solved on an IBM RS/6000 work station. 

Our results will be encouraging to economists who are interested in building medium-sized 
macro models designed for policy analysis. First, we find significant savings in terms of time 
when compared to the traditional F-T algorithm even when fairly loose conventional convergence 
tolerance limits are allowed for F-T. Second, we show that when the F-T convergence tolerance 
is tightened sufficiently to approximately replicate the L-B-J results, the relative time savings of 
the L-B-J algorithm become enormous. This result is surprising because all these tests were 
performed on an early version of MULTIMOD that was developed with the F-T algorithm. This 
model is approximately linear in the sense that it generally only takes a few L-B-J iterations to 
achieve full convergence for a large set of shocks. We also consider a few alternative cases where 
MULTIMOD development has been impeded because F-T has had more diiculty in finding 
solutions. Here the relative comparison becomes more difficult because it depends on how adept 
the user is at tuning certain parameters to achieve convergence and this depends on the particular 
shock and model that is under consideration. 

The remainder of this paper is organized as follows. In Section II, we explain the basic 
problem and a new Newton-Raphson based solution method suggested by LafFargue (1990), 
Boucekkine (1995) and Juillard (1996). Section III then provides an illustrative example of how 
the L-B-J algorithm works for solving a small nonlinear model of the output-inflation process. 
Section IV provides a very brief discussion of the F-T algorithm. In Section V we use 
MULTIMOD, the Fund’s macroeconometric model of the world economy, to compare the 
simulation performance of the L-B-J algorithm with the F-T algorithm. In Section VI, we provide 
examples of extensions to models like MULTIMOD that have been dif&ult to implement with the 
F-T algorithm. Section VI provides some conclusions. 

2The original prototype for the L-B-J algorithm was written in GAUSS for a PC (Juillard, 1996). 
It has recently been integrated in a much more efficient manner into Portable TROLL by Peter 
Hollinger at Intex Solutions. 
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IL ‘I-HE L-B-J METHOD FOR SOLVING 
NONLINEAR RATIONAL EXPECTATIONS MODELS 

A. The Basic Problem and Notation 

We consider nonlinear models with n endogenous variables, yf,b i=l, ,.., n, m exogenous 
variables, x/.. j=1, . . . . m, and p parameters, @, k = I, . . ., p. We use the notationy, for the vector 
of dependent variables at time t, x,, the vector of exogenous variables, and 6, the vector of 
parameters. 

The model is such that the n current values ofy, depend on previous and future values of 
the endogenous variables, the exogenous variables and the parameters. Exogenous variables may 
appear themselves with leads or lags, but this will not change the nature of the problem to be 
solved. For simplicity, we can consider only current exogenous variables without affecting the 
generality of the discussion. 

Any model with endogenous variables appearing with multiple leads (y,* for i > 1) or lags 
can be transformed into an equivalent model with variables that appear only with single leads and 
lags through the use of defining auxiliary variables. For this reason, and without loss of 
generality, here we only consider models with leads and lags of one period. 

For the system of current endogenous variables to be exactly determined there must be art 
equation for each of the n current endogenous variables. For convenience, we express this 
system in the following way: 

In most problems, not all of the n endogenous variables appear with a lead or a lag. 
However, a basic identification condition of the model requires that they all appear as a current 
variable. The fact that a variable does not appear with a lead or a lag can be exploited by the 
algorithm. 

For a given sequence of exogenous variables, X, *1,-J, and a given set of parameters 0, 
assume that a unique trajectory exists fory for the time span between 1 to T. Obviously, this 
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particular trajectory will correspond to specific initial conditions yz and terminal conditions Y;+].~ 
Conditions for the existence of a single saddle-point stable trajectory are discussed in Blanchard 
and Kahn (1980) and Boucekkine (1995). For the purpose of this paper, we will assume that 
these stability conditions are satisfied. 

As in a particular simulation which takes the exogenous variables x,, t-l,. . .,T and the 
parameters @as given, one can rewrite the equations of the model in the following compact form: 

f(z )- 81 ~,-lY2t+1J~e) 

[ 
r - gnO;&J~+p~r~) 1 t=lY..,T 

where z,= [y;,, y; y;+, 1’. For the initial and terminal conditions, we write: 
This is a standard two-point boundary value problem which is best solved simultaneously for all 

fo=uo-Yi=O 
f T+l = YT+I-Y;+l =o 

the equations and all the periods at once.4 For this reason, we build Y, the vector of the values of 
the dependent variables for all the periods stacked-up as Y’= [yi y( . . . yi yT+J. 

The entire system with (T+2) x n equations can now be written as 

31n this paper, we ignore the issue about how to solve for the true terminal conditions and just 
impose artificial baseline estimates. There are two general approaches to this problem. The first, 
which was suggested by Fair and Taylor (1983), just adds an additional iterative scheme to the 
basic algorithm and this iterative method is then used to eventually buildup the true model- 
consistent terminal conditions. The alternative is to derive a steady-state analogue model and 
then use this model to compute the true terminal conditions--for an example of this methodology 
see Black, et al (1994). 

‘Sections 4 and 5 discusses the problems associated with breaking the Ml simultaneous problem 
into smaller pieces- see also Armstrong et al (1995) and Pioro et al (1996). 



-8- 

B. Solving the System With the Newton-Raphson Method 

Conceptually the Newton-Raphson method is quite simple. It consists of taking analytical 
derivatives and then deriving linear approximations of the system F(r) = 0. At each step, the 
vector Y is modified by an amount dY. 

AY = -$-‘F(Y) 1 1 
The difficulty with this approach resides with the size of the Jacobian ?!Q which is a 

matrix of dimension [n x (T+2)] x [n x (T+2)], where n is the number of equatks and T the 
number of simulation periods. Note that it is necessary to take into account, the space necessary 
for initial and terminal conditions. For a model with 500 equations, which is about the size of the 
various versions of MULTIMOD (including auxiliary equations necessary to handle multiple leads 
and lags), simulated over 100 periods, it would be a matrix 5 1,000 x 5 1,000.5 However, as is 
shown in Ltiargue (1990), the structure of this matrix is such that its triangularization can be 
handled recursively and that there is no need to store the entire Jacobian matrix at any time. In 
fact, as we will show below, only a matrix 50,000 x 112 is required, i.e. a matrix with as many 
rows as there are equations multiplied by the number of periods in the simulations and as many 
columns as there are variables with lead (including auxiliary variables for multiple leads) in the 
model. Furthermore, the design of the algorithm makes it easy to store it on a hard disk and does 
not require excessive memory requirements for the algorithm to be functional. 

The equation for the computation of the improvement of Newton-Raphson can be written 
in a way which illuminates the particular structure of the Jacobian: 

5As shown is in Section IV, this method can efficiently handle problems that are substantially 
larger than this. Indeed, one enormous advantage of this algorithm compared to some existing 
algorithms is that solution speed is approximately a linear function of the simulation horizon. 



AY = 

where Lt, C, and F, are the partial Jacobians: 

As already mentioned, for most applications the partial Jacobians have many empty columns and 
we can take advantage of this special sparse structure to improve the efficiency of the algorithm. 

The basic approach of the L-B-J algorithm is to eliminate the elements either below or 
above the main diagonal so that the model solution can proceed recursively either backwards or 
forwards. For illustrative purposes, we will eliminate the elements below the main diagonal. The 
handling of the first period is special because the existence of initial conditions. We have the 
equation: 

The initial conditions give us dy, = 0 and we can solve the linear problem for dy,: 

Ay, + C;‘FrAy2 = -C;r&(z,) 



” lo- 

After this first step, the system looks like: 

1 r 

* 4 

L2 c* Fz 
**. -.. 

AY = 
-*. 

CT LT 
I 

0 

4 

-3yzJ 

-f&J 

0. 

where 

For the second period, and all the following ones, the basic equation is: 

LPY,- 1 +CPur+FPrr+, = -ft(z,) 

We retrieve the value of dy,, from the equation for the previous period: 

AY,-, +M,-lAY,=d,-1 

By substitution and eliminating the term L,Ayts,, we obtain 

<c,-LIM,-,)Ay,+FPy,+,=-f,(zS-Lp,-1 

Then, solving for dy,, 

AYt + cc, - LM-J’FPY,,, = -cc, - LcM,J’v,<z,> + LA-1) 

After triangularization, the system looks like: 



I 
I 4 

*.. = 

0 

4 

4 

0 

where MI = (C, - L,M,,J’F, and d, = -(C, - L,A4J’U;(zJ + L$,J. 
obtained through backward substitution: 

AYt = 4 - Mpr,+l 

The value of AY are then easily 

Using this approach, the only blocks requiring storage are M, and dt f = I,..., T. As 
already mentioned, further reduction in storage is obtained by taking into account the empty 
columns of the partial Jacobians. 

C. Using the Spar&y of the Jacobian Blocks 

Because not all variables of the model have leads and lags, several columns of the Jacobian 
blocks will be empty and this information will generally be known before starting the 
computation.6 This information can then be exploited in the following way. 

For one period, the argument of the flmctionfi (j needs only the subvector of z, containing 
lagged and leading variables actually used in the model. If the functionfj (j is redefined in this 
manner, its corresponding Jacobian will necessarily just contain the nonempty columns of L, C, 
and Fr Then, the variables present in blockM;:, are those present with a lead in the model. 
Furthermore, in most large macroeconometric models, the C, matrix as well as (C, - L,MJ can be 
very sparse, and there is great numerical advantage in using sparse matrix techniques-for a 
discussion of available sparse matrix techniques see Press et al (1992). 

III. iiN ILLUSTFtATIVE EXAMPLE OF THE L-B-J METHOD 

In order to illustrate the L-B-J method in practice, consider the following simple nonlinear 
model of the output-inflation process suggested by Laxton, Meredith and Rose (1995): 

61t is possible that because of linearization that a zero element may suddenly become nonzero. 
This problem is easily dealt with by algorithms that are designed to exploit sparse systems. 
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PDOT, = .414*PDOT,+, +(l -.414)*PDOTtm1 + .196*(,g2/(g-Y,)-g) 
+ .276*(g2/(g - Y,-,) -g 

RR, = RXt- .414*PDOT,+, -(l - .414)*PDOT,-, 
RSt = 3 *PDOT,- Yt 

Yt = .304*Y*-i -.098*RR,-.315*RRI-i + EY, 

where PDOT is inflation, Y is the output gap (real GDP relative to potential output), RR is the 
real interest rate, RS is the short-term interest rate, EY is a shock term and g is a constant equal 
to 0.049. The model also contains an equation for the long-term interest rate that is determined 
by the expectation theory of the term structure; this variable is determined recursively and is 
excluded from the matrices to simplify the exposition. 

This particular functional form has some interesting properties because it implies that the 
short-run trade-off between output and inflation-or the so-called Phillips curve-depends on the 
existing level of excess demand pressures. Indeed, at very high levels of excess demand pressure 
(for Y > 0.03 or 0.04 for example) an expansionary monetary policy would have enormous effects 
on Mation and only small positive effects on Y. This is an interesting example because the model 
contains forward-looking behavior as well as a significant nonlinearity that would arise in any 
well-specified structural model of the monetary transmission mechanism. We examine now the 
consequences of a shock of .02 on EY in period 1. 

In order to make the procedure more explicit, we detail one part of the iterative procedure. 
During the first iteration of the Newton-Raphson procedure, after the triangularization for the 
third period, the relevant subsystem for periods 3 and 4 is: 

1 0 0 0 -0.48 0 0 0 

0 1 0 0 -0.72 0 0 0 
0 0 1 0 -1.3 0 0 0 
0 00 1 0.19 0 0 0 

-0.59 0 0 -0.28 1.0 0 0 -0.20 -0.41 0 0 0 
0.59 0 0 0 0 1.0 -1.0 0 0.41 0 0 0 

0 00 0 -3.0 0.0 1.0 -1.0 0 000 

0 0.32 0 -0.30 0 0.1 0 1.0 0 000 

= 

0.007 
0.011 

0.015 

-0.006 
0 
0 
0 
0 

After triangularization for period 4, the subsystem becomes: 
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1 0 0 0 -0.48 0 0 0 

0 1 0 0 -0.72 0 0 0 

0 0 1 0 -1.3 0 0 0 

0 0 0 1 0.19 0 0 0 

1 0 0 0 -0.48 0 0 
0 1 0 0 -0.70 0 0 

0 0 1 0 -1.2 0 0 

0 0 0 1 0.21 0 0 

0.007 
0.011 

0.015 

-0.006 = 
0.002 
-0.005 

0 
-0.006 

In this example, only one column of the M blocks need to be stored. It is the one corresponding to 
the lead variable PDOT,,. 

Charts 1 to 4 show how the trajectory of the endogenous variables change from iteration 
to iteration. The values reported in these charts are for inflation, the short-term interest rate, real 
GDP and the long-term interest rate. In total, it takes four iterations to reach convergence.7 
However, only the first two iterations are distinguishable from one another in the charts and for 
most practical purposes we can say that system has converged after two iterations. 

In the tist iteration the model is linearized around Y = 0 so the procedure initially 
underestimates the inflationary effect of the Y shock. As a result the positive response of short- 
term and long-term interest rates is also underestimated in the first period of the shock. However, 
in the second iteration the model now has a better solution trajectory to linearize the model 
around and consequently the procedure will now produce much more reliable estimates of the 
inflationary effects of the EY shock. Of course, when the system is stacked the same properties 
will hold for all periods and any updating of the linearization process in the neighborhood of the 
true solution will converge rapidly. For example, this nonlinear model of the output-inflation 
process suggests that the output gap, or real GDP, will have to undershoot its equilibrium level- 
as can been seen in Chart 3, the negative effects on real GDP are also estimated fairly precisely in 
the second iteration. Again, this a key property of stacking the system and exploiting the 
quadratic convergence and robustness properties of a Newton-Raphson based algorithm. 

‘In this example, the convergency criterium is set so that maxl~(z,)ll s 10m5. 
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Chart 1. Small Model Results for Inflation 

PERIOD BASE I II III Iv 
1 0 0 0 0 0 

2 0 0.6496 0.9641 0.9688 0.9688 
3 0 0.7754 1.198 1.208 1.208 
4 0 0.1448 0.322 0.3358 0.3358 
5 0 -0.05994 -0.02502 -0.01632 -0.0163 
6 0 -0.00611 -0.004 -0.00259 -0.00258 
7 0 0.01677 0.02084 0.02039 0.0204 
8 0 0.003683 0.006576 0.006624 0.006624 
9 0 -0.00218 -0.00181 -0.00164 -0.00164 
10 0 -0.00054 -0.00073 -0.00071 -0.00071 
11 0 O.O0041? 0.000437 0.000417 0.000417 
12 0 0.000126 0.000189 0.000186 0.000186 
13 0 -6.30E-05 -5.60E-05 -5.20E-05 -5.2OE-05 
14 0 -2.4OE-05 -3.20E-05 -3.lOE-05 -3.lOE-05 
15 0 0.000008 0.000008 0.000007 0.000007 

Inflation 

IV 

itel vatic 

Periods ” 12 
‘3 14 
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Chart 2. Small Model Results for Short-Term Interest Rate 

PERIOD BASE I II III Iv 
1 0 0 0 0 0 
2 0 3.625 4.5 4.513 4.513 
3 0 1.674 2.631 2.658 2.658 
4 0 -0.1005 0.1208 0.1525 0.1525 
5 0 -0.1524 -0.122 -0.1063 -0.1063 
6 0 0.05571 0.06419 0.06358 0.0636 
7 0 0.04206 0.05792 0.05702 0.05702 
8 0 -0.00408 0.00121 0.001947 0.001946 
9 0 -0.00625 -0.00682 -0.00645 -0.00645 
10 0 0.000861 0.000514 0.000459 0.00046 
11 0 0.001238 0.001513 0.001463 0.001463 
12 0 -0.00007 0.000058 0.000071 0.000071 
13 0 -0.00021 -0.00024 -0.00022 -0.00022 
14 0 0.000005 -1.30E-05 -1.40E-05 -1.4OE-05 
15 0 0.000032 0.000037 0.000036 0.000036 

Short-term interest rate 

ltel 

Periods 
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Chart 3. Small Model Results for Real GDP 

PERIOD BASE I II III Iv 
1 0 0 0 0 0 
2 0 1.676 1.608 1.607 1.607 
3 0 -0.652 -0.962 -0.9668 -0.9668 
4 0 -0.5349 -0.8453 -0.8548 -0.8548 
5 0 0.02739 -0.04691 -0.05739 -0.0574 
6 0 0.07405 0.0762 0.07135 0.07134 
7 0 -0.00824 -0.0046 -0.00416 -0.00417 
8 0 -0.01513 -0.01852 -0.01793 -0.01793 
9 0 0.000299 -0.00138 -0.00153 -0.00153 
10 0 0.002475 0.00271 0.002574 0.002574 
11 0 -1.4OE-05 0.000202 0.000213 0.000213 
12 0 -0.00045 -0.00051 -0.00049 -0.00049 
13 0 -1.90E-05 -6.7OE-05 -6.9OE-05 -6.90E-05 
14 0 0.000077 0.000083 0.000079 0.000079 
15 0 0.000007 0.000014 0.000015 0.0000 15 

Real GDP 

.ation 

Periods 

lter 
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Chart 4. Small Model Results for Long-Term Interest Rate 

PERIOD BASE I IT III Iv 
1 0 0 0 0 0 
2 0 0.2689 0.3991 0.4011 0.4011 
3 0 0.321 0.4958 0.5002 0.5002 
4 0 0.4406 0.6983 0.7067 0.7067 
5 0 0.4296 0.6914 0.7013 0.7013 
6 0 0.08231 0.187 0.1957 0.1957 
7 0 -0.02819 -0.00604 -0.00112 -0.00111 
8 0 -0.00206 0.000377 0.001224 0.001231 
9 0 0.008922 0.01146 0.01127 0.01127 
10 0 0.001935 0.003551 0.00359 0.00359 
11 0 -0.00111 -0.00088 -0.00079 -0.00079 
12 0 -0.00026 -0.00035 -0.00034 -0.00034 
13 0 0.000218 0.000233 0.000223 0.000223 
14 0 0.000064 0.000098 0.000096 0.000096 
15 0 -3.4OE-05 -0.00003 -2.7OE-05 -2.7OE-05 

Long-term interest rate 

ltel .ation 

Ial 
811 

l-l IJIll 
q IV 

Periods 



IV. ‘rHE FAIR-TAYLOR METHOD 

The Fair-Taylor (1983) method essentially breaks the till simultaneous problem discussed 
earlier into two parts and then relies on a Gauss-Seidel iterative scheme to obtain convergence. 
This process involves specifying guesses for the leads of the model-in the example discussed in 
Section III this would involve specifying guesses for lead values of PDOT in the inflation equation 
and the monetary policy reaction function- and then solving the model period by period over 
some horizon. This process is repeated until the expectational variables are consistent with the 
actual solution of the model up to some prespecified convergence criteria. Fair and Taylor 
referred to the solutions for each period where expectations are taken as predetermined as Type I 
iterations and the process of achieving consistency in expectations as Type II iterations. The 
Fair-Taylor algorithm also included Type III iterations. This third layer of iterations is necessary 
when the true terminal conditions are unknown. In practice, users can ignore this layer of 
iterations if they either know the steady state of the model or choose a simulation horizon that is 
sufficiently long that it will not have significant effects on the range of interest. In this paper, we 
ignore these issues and focus our attention on the properties of algorithms that combine Type I 
and Type II iterations versus the algorithms that do not. 

In the early days of computer technology when memory was scarce and sparse matrix 
techniques were not available, it was impossible to solve large systems without breaking them into 
more manageable parts. Indeed, as late as 1983 Fair and Taylor were not only recommending that 
the full system be broken in terms of Type I and Type II iterations, they also recommended that 
Type I iterations be further broken down and solved with a Gauss-Seidel algorithm.* The major 
problem with breaking the system into components is that, in some cases, these techniques may 
not find a solution even though a well-defined saddle point stable solution may exist.’ For 
example, Armstrong et al (1995) provide some examples of models that are saddle-point stable 

*Much of the discussion in the literature of the relative merits of Newton-Raphson based methods 
versus Gauss-Seidel has ignored techniques to deal with the sparse and repetitive structure of the 
Jacobian-see, for example, Hughes Hallett and Fisher (1992). Obviously, for even small models, 
the matrix inversion problem for an Newton-Raphson based algorithm can become incredibly time 
consuming without some technique to exploit the sparse structure of the Jacobian. For a 
discussion of available sparse matrix techniques, see Press et al (1992). 

‘%Iughes Hallett, Ma, and Yin (1996) provide an example of a nonlinear model of resource 
extraction where Newton-Raphson fails to converge. Of course, this is always a possibility in 
highly nonlinear models but we have never encountered any of these situations yet in our work 
with models that have a well-defined balanced growth path. However, users of MULTIMOD 
have found many situations where Fair-Taylor iterations would not converge without damping or 
using a different ordering of the model. Armstrong et al (1995) reports similar results for 
development work done on the Bank of Canada’s Quarterly Projection Model. 
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where the Fair-Taylor algorithm is simply incapable of finding a solution1o 

V. LB-J VERSUS F-T ON A MARK n VERSION OF MULTIMOD 

There are a few reasons why the MARK II version of MULTIMOD, represents an 
interesting test case for a new algorithm. ” First because this version of the model was developed 
with the Fair-Taylor algorithm, the results are unlikely to be biased against it and in favor of the 
L-B-J method. Second, the structure of the model mimics in many respects the structure of many 
other modem forward-looking macro models that have been designed for policy analysis-see for 
example, Coletti et al (1996), Gagnon (1991), McKibbin and Sachs (199 l), Helliwell et al (1990), 
Taylor (1988), and Edison et al (1987)-and for this reason the tests are likely to be 
representative. ‘* Third the model has been used extensively outside the Fund and in some cases it 
has been used as a be&mark to compare the performance of other algorithms-see for example, 
Pauletto (1995) . 

As mentioned earlier most of the development of MULTIMOD has taken place with Fair- 
Taylor. The specific implementation of the current version of the F-T algorithm is done as a 
macro in portable TROLL. Users have the option of solving the Type I iterations with either. 
Newton-Raphson or Gauss-Seidel. In this paper we will only consider the former because we 
have been unable to perform MULTIMOD simulations reliably with Gauss-Seidel.” 

The base-case set of results are reported in Table 1. These results compare the L-B-J 
method versus Fair-Taylor on a Mark II version MULTIMOD (MULTAQ) when the simulation 
horizon is set at 50 years and Type II convergence is set at 0.002.14 The table includes results for 
five shocks on the U.S. economy. These include shocks to: real government expenditures (G); the 
target level of nominal government debt (BT); potential output (YCAP); the target money supply 

“‘By saddle-point stable, we mean that they satisfy that Blanchard-Kahn (1980) conditions. 

“Documentation for early versions of MULTIMOD can be found in Masson, Symansky, Haas 
and Dooley (1988) and Masson, Symansky and Meredith (1990). 

‘*For an exhaustive review of the properties of these types of models see Bryant, Hooper and 
Mann (1993). 

13The same problems have been experienced with other software--for example Pioro, McAdam 
and Laxton (1996) experienced these sorts of problems using SLIM. 

14These simulations were run over night on an RS/6000 workstation that has been configured 
specifically for these applications. Hollinger (1996) reports some estimates on the same model 
using a Pentium with 32 megabytes of RAM. 
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(MT); and the risk premium term in the interest parity equation (ER). In addition, we also include 
the results for an increase in the target level of government debt and the money supply in all 
industrial countries. 

There are several interesting results in this table. First, if we examine the results for the 
L-B-J method we can see that the model solves in about 3 to 4 L-B-J iterations. Indeed, if we 
turn to Charts 5 and 6, which reports the response of the Deutsche Mark for the first two shocks 
reported in the table, we can see that the model gets very close to the true solution after the first 
iteration-we choose to report an exchange rate here because in MULTIMOD exchange rates are 
key jumpers in the model that absorb the effects of all shocks. In terms of absolute time, the L-B-J 
method produces some very impressive results with all simulations completed in under two 
minutes. 

If we now turn to the Fair-Taylor results we can see that the simulation times increase 
dramatically in some cases when a large number of Type II iterations are required for achieving 
convergence in expectations. The table also reports that maximum differences in the first period 
of the simulation between the L-B-J solution and the F-T solution for interest rates and the 
exchange rate. As can be seen in the table with this fairly loose level of Type II convergence 
tolerance (0.002) there can be fairly large differences between the L-B-J results and the F-T 
results. In fact, in the case of the shock to the U.S. interest parity relationship there can be errors 
in the exchange rate that can be as large as 7 percent. 

In order to more closely replicate the precision in the L-B-J results, we recalibrated the 
Type II convergence criteria until the quantitative differences between the two methods were less 
than 0.1 in both absolute and percentage terms for all of the shocks. These results are reported in 
Table 2. As can be seen in the Table, it is possible to replicate the degree of precision in the L-B- 
J results but this takes fairly tight convergence criteria and many more Type II iterations. 

For some shocks on MULTIMOD it can take more than 50 years to achieve a new 
steady-state equilibrium especially if the shock changes the desired net-foreign-asset position of 
the economy. Tables 3 and 4 redo the experiments considered in the first two tables with a 
simulation horizon increased from 50 years to 150 years. One of the great advantages of L-B-J is 
that solution times are approximately a linear function of the simulation horizon. Indeed, if we 
compare the L-B-J results in Table 3 with the L-B-J results in Table l-or Table 4 with Table 2- 
we will see that the L-B-J solution times are approximately three times as large when we expand 
the simulation horizon by a factor of three. This is not the case for algorithms such as F-T. In 
some cases, solution time increases by less than a factor of three but in other cases by significantly 
more. 

Although the exact magnitude of the efficiency gains of the L-B-J method relative to F-T 
depend on the shock, desired accuracy, and the simulation horizon these results strongly suggest 
that the L-B-J method is better suited for work that requires quick turnaround. However, as 
mentioned earlier, simulation speed is only one criteria for comparing alternative algorithms. 
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Chart 5. Multimod Results for the value of the Deutsche Mark 

PERIOD BASE I II III 
1 0.679684 0.674546 0.674598 0.674598 
2 0.672895 0.668248 0.668297 0.668297 
3 0.667468 0.663719 0.663758 0.663758 
4 0.662476 0.659825 0.659853 0.659853 
5 0.657789 0.65609 0.656109 0.656109 
6 0.657789 0.656627 0.656645 0.656645 
7 0.657789 0.656734 0.656751 0.656751 
8 0.657789 0.656523 0.656537 0.656537 
9 0.657789 0.656166 0.656178 0.656178 
10 0.657789 0.655812 0.655821 0.655821 

U.S. TARGET DEBT SHOCK: GR-ER 

Periods 
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Chart 6. Multimod Results for the value of the Deutsche Mark 

PERIOD BASE I II III Iv 
1 0.679684 0.630221 0.631989 0.632099 0.632099 
2 0.672895 0.628101 0.629728 0.629844 0.629844 
3 0.667468 0.631934 0.632966 0.63308 0.63308 
4 0.662476 0.638445 0.638737 0.638836 0.638836 
5 0.657789 0.643867 0.643719 0.643791 0.643791 
6 0.657789 0.649934 0.649734 0.64978 1 0.649781 
7 0.657789 0.651852 0.651762 0.651796 0.651796 
8 0.657789 0.650828 0.650786 0.650822 0.650822 
9 0.657789 0.64863 0.64851 0.648557 0.648557 
10 0.657789 0.646671 0.646406 0.646464 0.646464 

U.S. GOVERNMENT SPENDING SHOCK: GR-ER 

teration 

I 

Periods 6 9 
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VI. EXPERIENCESWITHMORERECENTVER~IONSOFMIILTIMOD 

A more important criteria for active model development work is that the simulation 
algorithm should require minimal intervention by the user. In other words, a desirable property of 
any algorithm is that it should be robust in situations where there are well-defined saddle-point 
stable solutions. As mention earlier, there is no guarantee that algorithms such as F-T will 
converge even in situations where well-defined saddle point stable solutions exist. Indeed, before 
Newton-Raphson based methods were developed it was more difficult to tell in some situations if 
convergence failure was a consequence of an unstable model or ifit was a consequence of an 
unstable algorithm. 

Although even Newton-based techniques may not converge in highly nonlinear models, 
our experience thus far with introducing moderate nonlinearities into new versions of 
MULTIMOD suggest that the L-B-J technique is considerably more robust than F-T. Indeed, in 
several situations in the past, MULTIMOD development has been impeded because F-T had 
difficulty finding a solution. In some cases, these problems were resolved by finding appropriate 
damping factors-for an example, of a version of MULTIMOD where damping was necessary- 
see Bartolini, Razin, and Symansky (1995). In other cases, these problems were so severe that it 
would have been impractical to carry on with existing tools. This was the case for example in a 
recent version of the model that examined the implications of endogenous total factor productivity 
see Bayourrii, Coe, and Helpman (1996). 

VII. CONCLUSIONS 

The development and use of forward-looking macro models in policymaking institutions 
has proceeded at a much slower pace than what was predicted in the early 1980s. An important 
reason for this is that researchers have not had access to robust and efficient solution techniques 
for solving nonlinear forward-looking models. This paper discusses the properties of a new 
algorithm that is used for solving MULTIMOD. Relative to traditional algorithms in use today, 
we find that this algorithm is considerably faster and much less prone to simulation failure. 
Because the algorithm can be used to solve individual country models of the same size, the results 
in this paper are likely to be of interest to anyone who is also engaged in the development of 
national models. 
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Table 1. L-B-J Method Versus Fair-Taylor in TROLL 

Muitimod Version: MULTAQ 
Simulation Period: 50 
N-R Convergence Criteria: 0.001 
F-T Type 2 Convergence Criteria: 0.002 

LB-J Fair-Taylor Maximum Difference 
Time Type1 Tie Type 2 RS RL ER 

(Minutes) Iterations (Minutes) Iterations (% pts) (% pts) (%) 

US-G shock (5%) 152 4 

US-BT (5%) 1.17 3 

US-YCAP shock (5%) 1.52 4 

US-MT shock (10%) 1.52 4 

US-ER shock (0.5%) 1.50 4 

9.72 89 0.019 0.011 0.970 

0.82 7 0.019 0.018 0.814 

9.50 87 0.016 0.007 0.974 

6.37 58 0.008 0.007 0.347P 

1.68 15 0.110 0.146 7.258 

BT shock for all countries (5%) 1.17 3 0.92 8 0.036 0.027 1.963 

MT shock for ali countries (10%) 152 4 7.67 70 0.015 0.014 0.710 
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Table 2. L-B-J Method Versus Fair-Taylor in TROLL 

Muitimod Verskm: MUETAQ 
Simulation Period: 50 
N-R Convergence Criteria: 0.001 
F-T Type 2 Convergence Criteria: 0.00001 

GBJ 
Tie Type 1 

(Minutes) Iterations 

Fair-Taylor Maximum Difference 
Time Type 2 

(Minutes) Iterations (x”pts) pypts) F!) 

US-G shock (5%) 1.52 4 19.25 177 0.000 0.000 0.005 

US-BT (5 %) 1.17 3 12.25 113 0.000 0.000 0.001 

US-YCAP shock (5%) 1.52 4 19.17 176 0.000 0.000 0.005 

US-MT shock (10%) 1.53 4 15.23 140 0.000 0.000 0.006 

US-ER shock (05%) 1.52 4 12.53 115 o.ooo 0.000 0.003 

BT shock for all countries (5%) 1.17 3 13.72 126 0.000 0.000 0.003 

MT shock for aii countries (10%) 1.52 4 17.53 161 0.000 0.000 0.004 
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Table 3. L-B-J Method Versus Fair-Taylor in TROLL 

Muitimod Version: MULTAQ 
Simulation Period: 150 
N-R Convergence Criteria: 0.001 
F-T Type 2 Convergence Criteria: 0.002 

LB-J Fair-Taylor Maximum Difference 
Tie Type 1 Tie Type 2 RS RL ER 

(Minutes) Iterations (Minutes) Iterations (‘A pts) (% pts) (%) 

US-G shock (5%) 4.38 4 83.98 263 0.014 0.012 0.654 

US-BT (5%) 3.33 3 2.30 7 0.044 0.037 2.081 

US-YCAP shock (5%) 4.37 4 82.85 260 0.009 0.010 0.403 

US-MT shock (10%) 4.38 4 17.58 55 0.039 0.040 1.627 

US-ER shock (0.5%) 5.45 5 50.45 148 0.003 0.008 0.568 

BT shock for aii countries (5%) 5.10 4 2.97 8 0.103 0.074 5.453 

MT shuck for aii countries (10%) 4.85 4 79.77 240 0.010 0.008 0.494 
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Table 4. L-B-J Method Versus Fair-Taylor in TROLL 

Muitimod Version: MULTAQ 
Simulation Period: 150 
N-R Convergence Criteria: 0.001 
F-T Type 2 Convergence Criteria: 0.00001 

LBJ Fair-Taylor Maximum Difference 
Time Type 1 Time Type 2 RS RL ER 

(Minutes) Iterations (Miiutes) Iterations (% pts) (% pts) (%) 

US-G shock (5%) 4.42 4 163.72 499 0.000 o.ooo 0.003 

US-BT (5%) 3.35 3 103.97 319 0.000 0.000 0.002 

US-YCAP shock (5%) 4.40 4 156.60 486 0.000 0.000 0.004 

US-MT shock (10%) 4.43 4 126.25 348 0.000 0.000 0.001 

US-ER shock (0.5%) 5.45 5 103.67 324 0.000 0.000 0.005 

BT shock for aii countries (5%) 4.38 4 110.53 346 0.000 0.000 0.001 

MT shock for aii countries (10%) 4.43 4 143.37 449 o.ooo 0.000 0.004 


